Objetivo

Identificar los valores de la función de probabilidad bajo la fórmula de distribución de Poisson.

Descripción

Realizar distribuciones de probabilidad conforme a la distribución de probabilidad de Poisson a partir del valor medio dado en ejercicios.

Se generan las tablas de probabilidad conforme a distribución Poisson, se identifican los valores de probabilidad cuando la variable discreta \(x\) tenga algún exactamente algún valor, \(\leq\) a algún valor o \(\gt\) o \(\geq\), entre otros.

Fundamento teórico

Otra variable aleatoria discreta que tiene numerosas aplicaciones prácticas es la variable aleatoria de Poisson. Su distribución de probabilidad da un buen modelo para datos que representa el número de sucesos de un evento especificado en una unidad determinada de tiempo o espacio [@mendenhall_introduccion_2006].

Los experimentos que dan valores numéricos de una variable aleatoria X, el número de resultados que ocurren durante un intervalo dado o en una región específica, se llaman experimentos de Poisson.[@walpole_probabilidad_2012]

Esta distribución, suele usarse para estimar el número de veces que sucede un hecho determinado (ocurrencias) en un intervalo de tiempo o de espacio. Por ejemplo,

  • La variable de interés va desde el número promedio de automóviles que llegan (llegadas) a un lavado de coches en una hora o

  • El número medio de reparaciones necesarias en 10 kms. de una autopista o,

  • El número promedio de fugas de agua en tubería en un lapso 3 meses.

  • El número de focos promedio que fallan en una cantidad de lote de 1000 focos.

  • El número medio de fugas en 100 kms.de tubería, entre otros [@anderson_estadistica_2008].

Fórmula

\[ f(x) = \frac{{e^{ - \mu }\cdot \mu ^x }}{{x!}} \] en donde:

  • \(f(x)\) es la función de probabilidad para valores de \(x=0,1,2,3..,n\).

  • \(\mu\) es el valor medio esperado en cierto lapso de tiempo. Algunas veces expresado como \(\lambda\) lambda.

  • \(x\) es la variable aleatoria. Es una variable aleatoria discreta \((x = 0, 1,. 2, . . . )\)

  • \(e\) valor constante, es la base de los logaritmos naturales \(2.71728\).

Propiedades de un evento Poisson:

  • La probabilidad de ocurrencia es la misma para cualquiera de dos intérvalos de la misma longitud.
  • La ocurrencia o no ocurrencia en cualquier intervalo es independiente de la ocurrencia o no ocurrencia en cualquier otro intervalo.

Esperanza, varianza y desviación estándard

Los valores de la esperanza (o media) y de la varianza para la distribución de Poisson son de la siguiente manera:

El valor medio o esperanza\[E(X) = \lambda \]

La varianza\[Var(X) = \sigma^{2} = \lambda\]

La desviación\[\sigma = \sqrt{Var(x)} = \sqrt{\sigma^{2}}\]

Desarrollo

Cargar librerías

library(ggplot2)

Cargar funciones

#source("../funciones/funciones.distribuciones.r")
# o
source("https://raw.githubusercontent.com/rpizarrog/Trabajos-en-R-AD2021/main/funciones/funciones.para.distribuciones.r")

Ejercicios

Se describen ejercicios en donde se encuentra la función de distribución

Llegadas a cajero automático

Suponga que desea saber el número de llegadas, en un lapso de 15 minutos, a la rampa del cajero automático de un banco.[@anderson_estadistica_2008]

Si se puede suponer que la probabilidad de llegada de los automóviles es la misma en cualesquiera de dos lapsos de la misma duración y si la llegada o no–llegada de un automóvil en cualquier lapso es independiente de la llegada o no–llegada de un automóvil en cualquier otro lapso, se puede aplicar la función de probabilidad de Poisson.

Dichas condiciones se satisfacen y en un análisis de datos pasados encuentra que el número promedio de automóviles que llegan en un lapso de 15 minutos es igual a 10;

Aquí la variable aleatoria es \(x\) número de automóviles que llegan en un lapso de 15 minutos.

Probabilidad de que lleguen exactamente 5 automóviles en 15 minutos

Si la administración desea saber la probabilidad de que lleguen exactamente 5 automóviles en 15 minutos, \(x=5\),y se obtiene:

Inicializando variables y valores

media <- 10
x <- 5

Utilizando la función creada conforme a la fórmula

prob <- round(f.prob.poisson(media = media, x = x),4)
paste("La probabilidad de que sean exactamente 5 automóviles es de : ", prob)
## [1] "La probabilidad de que sean exactamente 5 automóviles es de :  0.0378"

Utilizando la función dpois()

prob2 <- round(dpois(x = 5, lambda = media),4)
paste("La probabilida de que sean exactamente 5 automóviles es de : ", prob2)
## [1] "La probabilida de que sean exactamente 5 automóviles es de :  0.0378"

Tabla de probabilidad y gráfica de la probabilidad de Poisson

options(scipen=999) # Notación normal 
tabla <- data.frame(x=0:25, f.prob.x = round(dpois(x = 0:25, lambda = media),4))
tabla <- cbind(tabla, f.acum.x = ppois(q=0:25, lambda = media))
tabla
##     x f.prob.x      f.acum.x
## 1   0   0.0000 0.00004539993
## 2   1   0.0005 0.00049939923
## 3   2   0.0023 0.00276939572
## 4   3   0.0076 0.01033605068
## 5   4   0.0189 0.02925268808
## 6   5   0.0378 0.06708596288
## 7   6   0.0631 0.13014142088
## 8   7   0.0901 0.22022064660
## 9   8   0.1126 0.33281967875
## 10  9   0.1251 0.45792971447
## 11 10   0.1251 0.58303975019
## 12 11   0.1137 0.69677614630
## 13 12   0.0948 0.79155647639
## 14 13   0.0729 0.86446442262
## 15 14   0.0521 0.91654152707
## 16 15   0.0347 0.95125959670
## 17 16   0.0217 0.97295839022
## 18 17   0.0128 0.98572238640
## 19 18   0.0071 0.99281349540
## 20 19   0.0037 0.99654565802
## 21 20   0.0019 0.99841173934
## 22 21   0.0009 0.99930034949
## 23 22   0.0004 0.99970426319
## 24 23   0.0002 0.99987987785
## 25 24   0.0001 0.99995305062
## 26 25   0.0000 0.99998231973

Visualizando probabilidad de Poisson

ggplot(data = tabla, aes(x,f.prob.x) ) +
  geom_point(colour = "red") +
  geom_line(colour = 'blue')

¿Cual es la probabilidad de que X sea menor o igual a diez?

\[P(x \leq10) = P(x=0) + P(x=1) + P(x=2) + P(x=3) + ... + P(x=10)\]

i <- 10
tabla$f.acum[i + 1]
## [1] 0.5830398
paste("La probabilidad de que el valor de x sea menor o igua a 10 es: ", tabla$f.acum[i + 1])
## [1] "La probabilidad de que el valor de x sea menor o igua a 10 es:  0.583039750192985"

Usando ppois()

ppois() determina la probabilidad acumulada de una distribución Poisson.

prob <- round(ppois(q = 10, lambda = media), 4)
paste("La probabilidad de que el valor de x sea menor o igua a 10 es: ", prob)
## [1] "La probabilidad de que el valor de x sea menor o igua a 10 es:  0.583"

Media diferente

En el ejemplo anterior se usó un lapso de 15 minutos, pero también se usan otros lapsos. Suponga que desea calcular la probabilidad de una llegada en un lapso de 3 minutos.

Regla de tres:

\[ 10 = 15\] \[ ? = 3\]

Entonces, la probabilidad de \(x=4\) llegadas en un lapso de 3 minutos con \(μ = 2\) está dada por la siguiente nueva función de probabilidad de Poisson.

\[ \mu = 2 \]

\[ f(x) = \frac{{e^{ - \mu }\cdot \mu ^x }}{{x!}} \]

Entonces ….

media <- 2
x <- 4
prob <- round(dpois(x = 4, lambda = media),4)
paste("La probabilidad cuando x = 4 y media igual a 2 es del:", prob * 100, "%")
## [1] "La probabilidad cuando x = 4 y media igual a 2 es del: 9.02 %"

El valor de la esperanza media

Regresando a la media \(\mu = 10 \text{ o }\lambda = 10\) , entonces la esperanza media es igual a: \(10\)

La varianza

La varianza es igual a \(10\)

La desviación estándar

La raiz cuadrada de \(\sqrt{10}\)

sqrt(media)
## [1] 1.414214

Interpretación

Se puede observar de la gráfica de distribución de probabilidad que su comportamiento es similar a la distribución normal. Es decir, mientras se incrementa el valor de x, su probabilidad aumenta, pero llega a un punto donde vuelve a disminuir. Lo particular de este problema de llegada de automoviles es que podemos cambiar la media registrada para realizar un naálisis en otroas situaciones. Por ejemplo, el problema cambia la media a 2 autos, lo cual, nos genera una probabilidad de que lleguen 4 autos de 9%, es decir, mayor a lo 3% si usaramos la media de 10. Esto nos indica que la media es un buen estimador del valor que esperariamos y por tanto, da información sobre la probabilidad que podriamos esperar al realizar una prueba. Evidentemente tenemos una distribucion de Posisson porque estamos realizando un análisis considerando un valor promedio conocido y posteriormente realizando una prueba con un valor x de interes.

Instalaciones industriales

En ciertas instalaciones industriales los accidentes ocurren con muy poca frecuencia. Se sabe que la probabilidad de un accidente en cualquier día dado es \(0.005\) y los accidentes son independientes entre sí [@walpole_probabilidad_2012].

¿Cuál es la probabilidad de que en cualquier periodo dado de 400 días habrá un accidente en un día?
Se multiplica la cantidad la de dias por su probabilidad para encontrar la media. Esta media será el parámetro para la distribución Poisson.

n <- 400
prob <- 0.005
media <- n * prob
media
## [1] 2

La variable aleatoria son los días desde \(x=0\)…hasta \(x=n\)

La tabla de distribución de probabilidad de Poisson

tabla <- data.frame(x=0:10, f.prob.x = round(dpois(x = 0:10, lambda = media),4))
tabla <- cbind(tabla, f.acum.x = ppois(q = 0:10, lambda = media))
tabla
##     x f.prob.x  f.acum.x
## 1   0   0.1353 0.1353353
## 2   1   0.2707 0.4060058
## 3   2   0.2707 0.6766764
## 4   3   0.1804 0.8571235
## 5   4   0.0902 0.9473470
## 6   5   0.0361 0.9834364
## 7   6   0.0120 0.9954662
## 8   7   0.0034 0.9989033
## 9   8   0.0009 0.9997626
## 10  9   0.0002 0.9999535
## 11 10   0.0000 0.9999917

Visualización de Poisson

ggplot(data = tabla, aes(x,f.prob.x) ) +
  geom_point(colour = "red") +
  geom_line(colour = 'blue')

¿Cuál es la probabilidad de que en cualquier periodo dado de 400 días habrá un accidente en un día?

\(P(x=1)\)

Recordar que el índice de la tabla empieza en el valor cero de tal forma que se necesita el siguiente valor \(x+1\) en la tabla:

i <- 1
prob <- tabla$f.prob.x[i+1]
paste("La probabilidad del valor de x=1 es: ", prob)
## [1] "La probabilidad del valor de x=1 es:  0.2707"
paste("La probabilidad del valor de x=1 es: ", round(dpois(x = 1, lambda = media), 4))
## [1] "La probabilidad del valor de x=1 es:  0.2707"

¿Cuál es la probabilidad de que haya a lo más tres días con un accidente?

  • El indice en la taba comienza en cero
i <- 3
prob <- round(tabla$f.acum.x[i+1],4)
paste("La probabilidad del valor de x<=3 es: ", prob)
## [1] "La probabilidad del valor de x<=3 es:  0.8571"
paste("La probabilidad acumlada del valor de x<=3 es: ", round(ppois(q = 3, lambda = media, lower.tail = TRUE), 4))
## [1] "La probabilidad acumlada del valor de x<=3 es:  0.8571"

Interpretación

En este problema, al revisar los datos, podemos determinar que tenemos un comportamiento de distribución de Poisso porque se nos da un dato promedio de ocurrencia y posteriormente se nos solicita determinar la probabilidad de ocurrencia de un evento particular. Sin embargo, la distribución de probabilidad es ligeramente diferente al ejercicio anterior, ya que se asemeja mas a una distribicuión con una cola a la derecha o asimétrica. Esto nos indica que los valores bajos de x tienen una mayor probabilidad de ocurrencia (lo cual es evidente al ver la probabilidad d eocurrencia tan baja en promedio). Como se observa en los resultados de eventos como “menos de 3 accidentes por dia” (85.71%), no se esperaria tener un alto numero de accidentes debido a la probabilidad tan baja de ocurrencia (0.005)

Fabricante de automóviles

Un fabricante de automóviles se preocupa por una falla en el mecanismo de freno de un modelo específico. La falla puede causar en raras ocasiones una catástrofe a alta velocidad. Suponga que la distribución del número de automóviles por año que experimentará la falla es una variable aleatoria de Poisson con \(\lambda = 5\) [@walpole_probabilidad_2012].

La tabla de distribución cuando media igual a 5

media <- 5
tabla <- data.frame(x=0:20, f.prob.x = round(dpois(x = 0:20, lambda = media),8))
tabla <- cbind(tabla, f.acum.x = ppois(q = 0:20, lambda = media))
tabla
##     x   f.prob.x    f.acum.x
## 1   0 0.00673795 0.006737947
## 2   1 0.03368973 0.040427682
## 3   2 0.08422434 0.124652019
## 4   3 0.14037390 0.265025915
## 5   4 0.17546737 0.440493285
## 6   5 0.17546737 0.615960655
## 7   6 0.14622281 0.762183463
## 8   7 0.10444486 0.866628326
## 9   8 0.06527804 0.931906365
## 10  9 0.03626558 0.968171943
## 11 10 0.01813279 0.986304731
## 12 11 0.00824218 0.994546908
## 13 12 0.00343424 0.997981148
## 14 13 0.00132086 0.999302010
## 15 14 0.00047174 0.999773746
## 16 15 0.00015725 0.999930992
## 17 16 0.00004914 0.999980131
## 18 17 0.00001445 0.999994584
## 19 18 0.00000401 0.999998598
## 20 19 0.00000106 0.999999655
## 21 20 0.00000026 0.999999919

Visualización de Poisson

ggplot(data = tabla, aes(x,f.prob.x) ) +
  geom_point(colour = "red") +
  geom_line(colour = 'blue')

¿Cuál es la probabilidad de que, a lo más, 3 automóviles por año sufran una catástrofe?

\[P(X \leq 3)\]

\[P(X=0) + P(X=1) + P(X=2) + P(X=3)\]

i <- 3
prob <- tabla$f.acum.x[i+1]
paste("La probabilidad del valor de x<=3 es: ", round(prob * 100,4), "%")
## [1] "La probabilidad del valor de x<=3 es:  26.5026 %"
paste("La probabilidad del valor de x<=3 es: ", round(ppois(q = 3, lambda = media),4) * 100, "%")
## [1] "La probabilidad del valor de x<=3 es:  26.5 %"

¿Cuál es la probabilidad de que más de 1 automóvil por año experimente una catástrofe?

\[ 1 - P(X \leq 1) \] \[ 1 - (P(X=0) + P(x=1))\]

i <- 1
prob <- 1 - tabla$f.acum.x[i+1]
paste("La probabilidad del valor de x>1 es: ", round(prob * 100,4), "%")
## [1] "La probabilidad del valor de x>1 es:  95.9572 %"
prob <- ppois(q = 1, lambda = media, lower.tail = FALSE)
paste("La probabilidad del valor de x>1 es: ", round(prob * 100,4), "%")
## [1] "La probabilidad del valor de x>1 es:  95.9572 %"

Interpretación

De acuerdo a los datos del problema tendremos una distribución de Poisson con una media de 5. Al generar la gráfica de distribución d eprobabilidad, se puede observar que es ligeramente asimétrica, con una tendencia a registrar valores de probabilidad altos para valores bajos de x. Aun así, la probabilidad de menos de 3 eventos es de 26%, ya que los valores de mayor probabilidad en el gráfica oscilan entre 4 y 6. Se debe prestar particular atención a que la probabilidad de que al menos 1 auto experimente una falla es de 95%, lo cual no es algo conveiente para la empresa. Evidentemente es natural que se presente alguna falla, pero se debe tener cuidado de que ese valor no se incremente durante la fabricación de mas automoviles.

Declaración de impuestos

Suponga que, en promedio, \(1 \text { persona en }1000\)
comete un error numérico al preparar su declaración de impuestos. Si se seleccionan \(10,000\) formas al azar y se examinan, encuentre la probabilidad de que \(6, 7 \text { u } 8\) de las formas contengan un error.[@walpole2007]. Ejercicio 5.65, Pág. 165.

\[ P(x=6:8) = P(x=6) + P(x=7) + P(x=8) \]

Valores iniciales

prob <- 1 / 1000
media <- prob * 10000

Tabla de distriución

tabla <- data.frame(x=0:20, f.prob.x = round(dpois(x = 0:20, lambda = media),8), f.acum.x = round(ppois(q = 0:20, lambda = media),8))
tabla
##     x   f.prob.x   f.acum.x
## 1   0 0.00004540 0.00004540
## 2   1 0.00045400 0.00049940
## 3   2 0.00227000 0.00276940
## 4   3 0.00756665 0.01033605
## 5   4 0.01891664 0.02925269
## 6   5 0.03783327 0.06708596
## 7   6 0.06305546 0.13014142
## 8   7 0.09007923 0.22022065
## 9   8 0.11259903 0.33281968
## 10  9 0.12511004 0.45792971
## 11 10 0.12511004 0.58303975
## 12 11 0.11373640 0.69677615
## 13 12 0.09478033 0.79155648
## 14 13 0.07290795 0.86446442
## 15 14 0.05207710 0.91654153
## 16 15 0.03471807 0.95125960
## 17 16 0.02169879 0.97295839
## 18 17 0.01276400 0.98572239
## 19 18 0.00709111 0.99281350
## 20 19 0.00373216 0.99654566
## 21 20 0.00186608 0.99841174

Usando dpois()

\[ P(x \text { de 6 a }8) = P(x=6) + P(x=7) + P(x=8) \]

Se suman las probabilidades

paste(round(dpois(x = 6, lambda = media),4), "+", round(dpois(x = 7, lambda = media),4), "+"
, round(dpois(x = 8, lambda = media),4))
## [1] "0.0631 + 0.0901 + 0.1126"
prob <- sum(dpois(x = 6:8, lambda = media))
paste("La probabilidad del valor de x de 6 a 8 es: ", round((prob * 100),4), "%")
## [1] "La probabilidad del valor de x de 6 a 8 es:  26.5734 %"

Interpretación

Tenemos nuevamente una distribución de Poisson donde se registra un error en promedio 1/1000 veces. Lo cual nos permitirá determinar la probabilidad de ocurrencia de un error para determinado numero de personas (x). Nuevamente tenenmos una distribución gráfica con un comportamiento ascendente y posteriormente descendente. Esto es coherente con los ejercicios anteriores. Por tanto, podemos ver que la probabilidad de que entre 6 y 8 personas cometan el error es de 26%. Esto nos indica que si ampliamos el rango de personas, la probabilidad se incrementara.

Interpretación

Los problemas desarrollados en este caso nos indican que todos tienen en comun una distribucion ligeramente asimétrica en donde se nos presenta un dato promedio para la ocurrencia del evento de ineteres y posteriormente se desea determinar la probabilidad de ocurrencia de u valor x o un rango de valores.

El problema de automoviles, cambia la media a 2 autos, lo cual, nos genera una probabilidad de que lleguen 4 autos de 9%, es decir, mayor a lo 3% si usaramos la media de 10. Esto nos indica que la media es un buen estimador del valor que esperariamos y por tanto, da información sobre la probabilidad que podriamos esperar al realizar una prueba.

El problema de los accidentes, indica que los valores bajos de x tienen una mayor probabilidad de ocurrencia (lo cual es evidente al ver la probabilidad d eocurrencia tan baja en promedio). Como se observa en los resultados de eventos como “menos de 3 accidentes por dia” (85.71%), no se esperaria tener un alto numero de accidentes debido a la probabilidad tan baja de ocurrencia (0.005)

El caso de error al registrar impuestos, podemos ver que la probabilidad de que entre 6 y 8 personas cometan el error es de 26%. Esto nos indica que si ampliamos el rango de personas, la probabilidad se incrementara.

Referencias Bibliográficas

Anderson, David R., Dennis J. Sweeney, and Thomas A. Williams. 2008. Estadística Para Administración y Economía. 10th ed. Australia • Brasil • Corea • España • Estados Unidos • Japón • México • Reino Unido • Singapur: Cengage Learning,. Mendenhall, William, Robert J. Beaver, and Barbara M. Beaver. 2006. Introducción a La Probabilidad y Estadística. 13a Edición. Walpole, Ronald E., Raymond H. Myers, and Sharon L. Myers. 2012. Probabilidad y Estadística Para Ingeniería y Ciencias. Novena Edición. México: Pearson.