Question 8.2

Suppose that in Problem 6.15, only a one-half fraction of the 24 design could be run. Construct the design and per- form the analysis, using the data from replicate I.

Design model

## Loading required package: DoE.base
## Loading required package: grid
## Loading required package: conf.design
## Registered S3 method overwritten by 'DoE.base':
##   method           from       
##   factorize.factor conf.design
## 
## Attaching package: 'DoE.base'
## The following objects are masked from 'package:stats':
## 
##     aov, lm
## The following object is masked from 'package:graphics':
## 
##     plot.design
## The following object is masked from 'package:base':
## 
##     lengths
## Call:
## FrF2(nfactors = 4, resolution = 3, randomize = FALSE)
## 
## Experimental design of type  FrF2 
## 8  runs
## 
## Factor settings (scale ends):
##    A  B  C  D
## 1 -1 -1 -1 -1
## 2  1  1  1  1
## 
## Responses:
## [1] response
## 
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D
## 
## $generators
## [1] D=ABC
## 
## 
## Alias structure:
## $fi2
## [1] AB=CD AC=BD AD=BC
## 
## 
## The design itself:
##    A  B  C  D response
## 1 -1 -1 -1 -1    7.037
## 2  1 -1 -1  1   16.867
## 3 -1  1 -1  1   13.876
## 4  1  1 -1 -1   17.273
## 5 -1 -1  1  1   11.846
## 6  1 -1  1 -1    4.368
## 7 -1  1  1 -1    9.360
## 8  1  1  1  1   15.653
## class=design, type= FrF2

Then we get factors that appear to be large in the model design

## 
## Call:
## lm.default(formula = response ~ A * B * C * D, data = des.res)
## 
## Residuals:
## ALL 8 residuals are 0: no residual degrees of freedom!
## 
## Coefficients: (8 not defined because of singularities)
##             Estimate Std. Error t value Pr(>|t|)
## (Intercept)  12.0350         NA      NA       NA
## A1            1.5053         NA      NA       NA
## B1            2.0055         NA      NA       NA
## C1           -1.7282         NA      NA       NA
## D1            2.5255         NA      NA       NA
## A1:B1         0.9172         NA      NA       NA
## A1:C1        -1.8015         NA      NA       NA
## B1:C1         0.1943         NA      NA       NA
## A1:D1             NA         NA      NA       NA
## B1:D1             NA         NA      NA       NA
## C1:D1             NA         NA      NA       NA
## A1:B1:C1          NA         NA      NA       NA
## A1:B1:D1          NA         NA      NA       NA
## A1:C1:D1          NA         NA      NA       NA
## B1:C1:D1          NA         NA      NA       NA
## A1:B1:C1:D1       NA         NA      NA       NA
## 
## Residual standard error: NaN on 0 degrees of freedom
## Multiple R-squared:      1,  Adjusted R-squared:    NaN 
## F-statistic:   NaN on 7 and 0 DF,  p-value: NA

AB=CD AC=BD AD=BC The following model terms A,B,C,D,AB,AC and BD appear to be large. BD because its alias AC=BD, since BD is large due to main effects B and D. However we conduct halfnormal and main effects plot for further screening.

From the plots, halfnormal doesn’t depict a clear representation of significant model terms, but main effect plots indicate model terms A,B,C,D are significant.

Analysis of variance

##             Df Sum Sq Mean Sq
## A            1  18.13   18.13
## B            1  32.18   32.18
## C            1  23.89   23.89
## D            1  51.03   51.03
## A:B          1   6.73    6.73
## A:C          1  25.96   25.96
## B:C          1   0.30    0.30

The model is not significant and will require additional runs to determine anova test. Perhaps a one-quarter fraction of the design to carry out the experiment

Question 8.24

Construct a \(2^{5-1}\) design. Show how the design may be run in two blocks of eight observations each. Are any main effects or two-factor interactions confounded with blocks?

For 2 blocks of 8 obs each, we would require a one quarter design to get 16 runs to place ‘+’ signs in block1 and ‘-’ signs in block2. Also note main effects cannot be used for blocks.

## $legend
## [1] A=A B=B C=C D=D E=E
## 
## [[2]]
## [1] no aliasing among main effects and 2fis
## Call:
## FrF2(nfactors = 5, resolution = 4, randomize = FALSE)
## 
## Experimental design of type  FrF2 
## 16  runs
## 
## Factor settings (scale ends):
##    A  B  C  D  E
## 1 -1 -1 -1 -1 -1
## 2  1  1  1  1  1
## 
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D E=E
## 
## $generators
## [1] E=ABCD
## 
## 
## Alias structure:
## [[1]]
## [1] no aliasing among main effects and 2fis
## 
## 
## The design itself:
##     A  B  C  D  E
## 1  -1 -1 -1 -1  1
## 2   1 -1 -1 -1 -1
## 3  -1  1 -1 -1 -1
## 4   1  1 -1 -1  1
## 5  -1 -1  1 -1 -1
## 6   1 -1  1 -1  1
## 7  -1  1  1 -1  1
## 8   1  1  1 -1 -1
## 9  -1 -1 -1  1 -1
## 10  1 -1 -1  1  1
## 11 -1  1 -1  1  1
## 12  1  1 -1  1 -1
## 13 -1 -1  1  1  1
## 14  1 -1  1  1 -1
## 15 -1  1  1  1 -1
## 16  1  1  1  1  1
## class=design, type= FrF2
## [1] 16
##     A  B  C  D  E
## 1  -1 -1 -1 -1  1
## 2   1 -1 -1 -1 -1
## 3  -1  1 -1 -1 -1
## 4   1  1 -1 -1  1
## 5  -1 -1  1 -1 -1
## 6   1 -1  1 -1  1
## 7  -1  1  1 -1  1
## 8   1  1  1 -1 -1
## 9  -1 -1 -1  1 -1
## 10  1 -1 -1  1  1
## 11 -1  1 -1  1  1
## 12  1  1 -1  1 -1
## 13 -1 -1  1  1  1
## 14  1 -1  1  1 -1
## 15 -1  1  1  1 -1
## 16  1  1  1  1  1
## class=design, type= FrF2
##        t AB blocks
## 1      e  1      1
## 2      a -1      2
## 3      b -1      2
## 4    abe  1      1
## 5      c  1      1
## 6    ace -1      2
## 7    bce -1      2
## 8    abc  1      1
## 9      d  1      1
## 10   ade -1      2
## 11   bde -1      2
## 12   abd  1      1
## 13   cde  1      1
## 14   acd -1      2
## 15   bcd -1      2
## 16 abcde  1      1

Factors AB and CDE are confounded in the blocks.

Question 8.25

Construct a \(2^{7−2}\) design. Show how the design may be run in four blocks of eight observations each. Are any main effects or two-factor interactions confounded with blocks?

## [1] 32
##          t ACE BFG blocks
## 1      (I)  -1  -1      1
## 2       ag   1   1      4
## 3       bg  -1  -1      1
## 4       ab   1   1      4
## 5      cfg   1  -1      3
## 6      acf  -1   1      2
## 7      bcf   1  -1      3
## 8    abcfg  -1   1      2
## 9       df  -1   1      2
## 10    adfg   1  -1      3
## 11    bdfg  -1   1      2
## 12    abdf   1  -1      3
## 13     cdg   1   1      4
## 14     acd  -1  -1      1
## 15     bcd   1   1      4
## 16   abcdg  -1  -1      1
## 17      ef   1   1      4
## 18    aefg  -1  -1      1
## 19    befg   1   1      4
## 20    abef  -1  -1      1
## 21     ceg  -1   1      2
## 22     ace   1  -1      3
## 23     bce  -1   1      2
## 24   abceg   1  -1      3
## 25      de   1  -1      3
## 26    adeg  -1   1      2
## 27    bdeg   1  -1      3
## 28    abde  -1   1      2
## 29   cdefg  -1  -1      1
## 30   acdef   1   1      4
## 31   bcdef  -1  -1      1
## 32 abcdefg   1   1      4

Question 8.28

A 16-run experiment was performed in a semiconductor manufacturing plant to study the effects of six factors on the curvature or camber of the substrate devices produced

##     A  B  C  D  E  F
## 1  -1 -1 -1 -1 -1 -1
## 2   1 -1 -1 -1  1  1
## 3  -1  1 -1 -1  1  1
## 4   1  1 -1 -1 -1 -1
## 5  -1 -1  1 -1  1 -1
## 6   1 -1  1 -1 -1  1
## 7  -1  1  1 -1 -1  1
## 8   1  1  1 -1  1 -1
## 9  -1 -1 -1  1 -1  1
## 10  1 -1 -1  1  1 -1
## 11 -1  1 -1  1  1 -1
## 12  1  1 -1  1 -1  1
## 13 -1 -1  1  1  1  1
## 14  1 -1  1  1 -1 -1
## 15 -1  1  1  1 -1 -1
## 16  1  1  1  1  1  1
## class=design, type= FrF2

a) The experimenter used a \(2^{6-2}\) design and a resolution 4 to get 16 runs

## $legend
## [1] A=A B=B C=C D=D E=E F=F
## 
## $main
## character(0)
## 
## $fi2
## [1] AB=CE=DF AC=BE    AD=BF    AE=BC    AF=BD    CD=EF    CF=DE

b) The aliases are model terms AB=CE=DF AC=BE AD=BF AE=BC AF=BD CD=EF CF=DE

c) From the camber data presented in the question, the experimenter changed the coded levels for model term F. Hence we manually create the designs to fit the experiment

Using the original design generated

## Number of observations used: 16 
## Formula:
## camber ~ (A + B + C + D + E + F)^2
## 
## Call:
## lm.default(formula = fo, data = model.frame(fo, data = formula))
## 
## Residuals:
##      1      2      3      4      5      6      7      8      9     10     11 
##  189.6 -120.3  120.3 -189.6 -189.6  120.2 -120.3  189.6 -189.6  120.3 -120.3 
##     12     13     14     15     16 
##  189.6  189.6 -120.3  120.3 -189.6 
## 
## Coefficients: (8 not defined because of singularities)
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept)  428.062    112.269   3.813   0.0624 .
## A1            77.812    112.269   0.693   0.5599  
## B1            11.562    112.269   0.103   0.9274  
## C1           112.063    112.269   0.998   0.4234  
## D1           -28.437    112.269  -0.253   0.8237  
## E1           -68.938    112.269  -0.614   0.6017  
## F1             1.063    112.269   0.009   0.9933  
## A1:B1         38.312    112.269   0.341   0.7654  
## A1:C1         44.813    112.269   0.399   0.7284  
## A1:D1        -24.438    112.269  -0.218   0.8479  
## A1:E1         36.312    112.269   0.323   0.7770  
## A1:F1         46.063    112.269   0.410   0.7214  
## B1:C1             NA         NA      NA       NA  
## B1:D1             NA         NA      NA       NA  
## B1:E1             NA         NA      NA       NA  
## B1:F1             NA         NA      NA       NA  
## C1:D1        -39.437    112.269  -0.351   0.7589  
## C1:E1             NA         NA      NA       NA  
## C1:F1         14.813    112.269   0.132   0.9071  
## D1:E1             NA         NA      NA       NA  
## D1:F1             NA         NA      NA       NA  
## E1:F1             NA         NA      NA       NA  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 449.1 on 2 degrees of freedom
## Multiple R-squared:  0.5713, Adjusted R-squared:  -2.215 
## F-statistic: 0.205 on 13 and 2 DF,  p-value: 0.9737

Using the experimenter’s design by changing the coding levels for factor F to correspond with the experiment

## 
## Call:
## lm.default(formula = camber ~ A * B * C * D * E * FF, data = dat)
## 
## Residuals:
## ALL 16 residuals are 0: no residual degrees of freedom!
## 
## Coefficients: (48 not defined because of singularities)
##              Estimate Std. Error t value Pr(>|t|)
## (Intercept)   428.062         NA      NA       NA
## A              77.813         NA      NA       NA
## B              11.562         NA      NA       NA
## C             112.063         NA      NA       NA
## D             -28.437         NA      NA       NA
## E             -68.938         NA      NA       NA
## FF           -154.938         NA      NA       NA
## A:B            38.312         NA      NA       NA
## A:C            44.813         NA      NA       NA
## B:C            36.313         NA      NA       NA
## A:D           -24.438         NA      NA       NA
## B:D            46.063         NA      NA       NA
## C:D           -39.437         NA      NA       NA
## A:E                NA         NA      NA       NA
## B:E                NA         NA      NA       NA
## C:E                NA         NA      NA       NA
## D:E            14.812         NA      NA       NA
## A:FF               NA         NA      NA       NA
## B:FF               NA         NA      NA       NA
## C:FF               NA         NA      NA       NA
## D:FF               NA         NA      NA       NA
## E:FF               NA         NA      NA       NA
## A:B:C              NA         NA      NA       NA
## A:B:D           1.063         NA      NA       NA
## A:C:D              NA         NA      NA       NA
## B:C:D         -34.688         NA      NA       NA
## A:B:E              NA         NA      NA       NA
## A:C:E              NA         NA      NA       NA
## B:C:E              NA         NA      NA       NA
## A:D:E              NA         NA      NA       NA
## B:D:E              NA         NA      NA       NA
## C:D:E              NA         NA      NA       NA
## A:B:FF             NA         NA      NA       NA
## A:C:FF             NA         NA      NA       NA
## B:C:FF             NA         NA      NA       NA
## A:D:FF             NA         NA      NA       NA
## B:D:FF             NA         NA      NA       NA
## C:D:FF             NA         NA      NA       NA
## A:E:FF             NA         NA      NA       NA
## B:E:FF             NA         NA      NA       NA
## C:E:FF             NA         NA      NA       NA
## D:E:FF             NA         NA      NA       NA
## A:B:C:D            NA         NA      NA       NA
## A:B:C:E            NA         NA      NA       NA
## A:B:D:E            NA         NA      NA       NA
## A:C:D:E            NA         NA      NA       NA
## B:C:D:E            NA         NA      NA       NA
## A:B:C:FF           NA         NA      NA       NA
## A:B:D:FF           NA         NA      NA       NA
## A:C:D:FF           NA         NA      NA       NA
## B:C:D:FF           NA         NA      NA       NA
## A:B:E:FF           NA         NA      NA       NA
## A:C:E:FF           NA         NA      NA       NA
## B:C:E:FF           NA         NA      NA       NA
## A:D:E:FF           NA         NA      NA       NA
## B:D:E:FF           NA         NA      NA       NA
## C:D:E:FF           NA         NA      NA       NA
## A:B:C:D:E          NA         NA      NA       NA
## A:B:C:D:FF         NA         NA      NA       NA
## A:B:C:E:FF         NA         NA      NA       NA
## A:B:D:E:FF         NA         NA      NA       NA
## A:C:D:E:FF         NA         NA      NA       NA
## B:C:D:E:FF         NA         NA      NA       NA
## A:B:C:D:E:FF       NA         NA      NA       NA
## 
## Residual standard error: NaN on 0 degrees of freedom
## Multiple R-squared:      1,  Adjusted R-squared:    NaN 
## F-statistic:   NaN on 15 and 0 DF,  p-value: NA

Half normal plot of design generated and experimenter’s design

Its not still clear from both plots as to which model terms are significant as this is merely a screening test to identify significant model terms. We would construct main effects plot for both designs

MEPlot(des.res,show.alias=TRUE,main ="Main Effects plot for design generated ")

MEPlot(u,show.alias=TRUE, main = "Main Effects plot for experimenter's design")

From the plots the design generated has main effects A,C,D,E to be significant. While the experimenter’s design has main effects A,C,E and F to be significant.

Anova for design generated

model<-aov(camber~A+C+D+E, data = des.res)
summary(model)
##             Df Sum Sq Mean Sq F value Pr(>F)  
## A            1  96877   96877   1.923 0.1930  
## C            1 200928  200928   3.989 0.0711 .
## D            1  12939   12939   0.257 0.6223  
## E            1  76038   76038   1.509 0.2449  
## Residuals   11 554111   50374                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

From the result, values of “Prob > F” less than 0.0500 indicate model terms are significant. In this case none of the model terms appear to be significant

model<-aov(camber~A+C+E+FF, data = dat)
summary(model)
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## A            1  96877   96877   5.824 0.034407 *  
## C            1 200928  200928  12.080 0.005188 ** 
## E            1  76038   76038   4.572 0.055787 .  
## FF           1 384090  384090  23.092 0.000549 ***
## Residuals   11 182960   16633                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

From the result, values of “Prob > F” less than 0.0500 indicate model terms are significant. In this case model terms A,C,E and F are significant, hence they affect average camber.

d) Do any of the process variables affect the variability in camber measurements?

## 
## Call:
## lm.default(formula = camber2 ~ A * B * C * D * E * FF, data = dat2)
## 
## Residuals:
## ALL 16 residuals are 0: no residual degrees of freedom!
## 
## Coefficients: (48 not defined because of singularities)
##              Estimate Std. Error t value Pr(>|t|)
## (Intercept)  25.35375         NA      NA       NA
## A             7.95175         NA      NA       NA
## B            -8.28862         NA      NA       NA
## C             2.93725         NA      NA       NA
## D            -1.64625         NA      NA       NA
## E            -1.16862         NA      NA       NA
## FF           -4.62800         NA      NA       NA
## A:B           0.47763         NA      NA       NA
## A:C           1.26200         NA      NA       NA
## B:C          -0.09012         NA      NA       NA
## A:D          -2.31325         NA      NA       NA
## B:D          -2.42788         NA      NA       NA
## C:D          -5.43725         NA      NA       NA
## A:E                NA         NA      NA       NA
## B:E                NA         NA      NA       NA
## C:E                NA         NA      NA       NA
## D:E           4.10913         NA      NA       NA
## A:FF               NA         NA      NA       NA
## B:FF               NA         NA      NA       NA
## C:FF               NA         NA      NA       NA
## D:FF               NA         NA      NA       NA
## E:FF               NA         NA      NA       NA
## A:B:C              NA         NA      NA       NA
## A:B:D        -0.34062         NA      NA       NA
## A:C:D              NA         NA      NA       NA
## B:C:D         1.69912         NA      NA       NA
## A:B:E              NA         NA      NA       NA
## A:C:E              NA         NA      NA       NA
## B:C:E              NA         NA      NA       NA
## A:D:E              NA         NA      NA       NA
## B:D:E              NA         NA      NA       NA
## C:D:E              NA         NA      NA       NA
## A:B:FF             NA         NA      NA       NA
## A:C:FF             NA         NA      NA       NA
## B:C:FF             NA         NA      NA       NA
## A:D:FF             NA         NA      NA       NA
## B:D:FF             NA         NA      NA       NA
## C:D:FF             NA         NA      NA       NA
## A:E:FF             NA         NA      NA       NA
## B:E:FF             NA         NA      NA       NA
## C:E:FF             NA         NA      NA       NA
## D:E:FF             NA         NA      NA       NA
## A:B:C:D            NA         NA      NA       NA
## A:B:C:E            NA         NA      NA       NA
## A:B:D:E            NA         NA      NA       NA
## A:C:D:E            NA         NA      NA       NA
## B:C:D:E            NA         NA      NA       NA
## A:B:C:FF           NA         NA      NA       NA
## A:B:D:FF           NA         NA      NA       NA
## A:C:D:FF           NA         NA      NA       NA
## B:C:D:FF           NA         NA      NA       NA
## A:B:E:FF           NA         NA      NA       NA
## A:C:E:FF           NA         NA      NA       NA
## B:C:E:FF           NA         NA      NA       NA
## A:D:E:FF           NA         NA      NA       NA
## B:D:E:FF           NA         NA      NA       NA
## C:D:E:FF           NA         NA      NA       NA
## A:B:C:D:E          NA         NA      NA       NA
## A:B:C:D:FF         NA         NA      NA       NA
## A:B:C:E:FF         NA         NA      NA       NA
## A:B:D:E:FF         NA         NA      NA       NA
## A:C:D:E:FF         NA         NA      NA       NA
## B:C:D:E:FF         NA         NA      NA       NA
## A:B:C:D:E:FF       NA         NA      NA       NA
## 
## Residual standard error: NaN on 0 degrees of freedom
## Multiple R-squared:      1,  Adjusted R-squared:    NaN 
## F-statistic:   NaN on 15 and 0 DF,  p-value: NA

Model terms that appear large are A,B,FF,CD,DE, however we would run other screening test to determine significant model terms

From the plots A,B,C and FF are identified to be main effects that are significant

CD<-C*D
DE<-D*E
CD<-as.factor(CD)
DE<-as.factor(DE)


model2<-aov(camber2~A+B+FF+CD, data = dat2)
summary(model2)
##             Df Sum Sq Mean Sq F value  Pr(>F)   
## A            1 1011.7  1011.7  15.231 0.00247 **
## B            1 1099.2  1099.2  16.549 0.00186 **
## FF           1  342.7   342.7   5.159 0.04420 * 
## CD           1  473.0   473.0   7.121 0.02185 * 
## Residuals   11  730.7    66.4                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

From the result, values of “Prob > F” less than 0.0500 indicate model terms are significant. In this case model terms A,B,FF and CD are significant hence they affect average camber.

e)If it is important to reduce camber as much as possible, what recommendations would you make?

Run A and C at the low level and E and F at the high level. B at the low level enables a lower variation without affecting the average camber

Question 8.40

Consider the following experiment in DOE text, 8.10 Problems Pg. 387:

##    A  B  C  D
## 1 -1 -1 -1 -1
## 2  1 -1 -1  1
## 3 -1  1 -1  1
## 4  1  1 -1 -1
## 5 -1 -1  1  1
## 6  1 -1  1 -1
## 7 -1  1  1 -1
## 8  1  1  1  1
## class=design, type= FrF2
## Call:
## FrF2(nfactors = 4, resolution = 4, randomize = FALSE)
## 
## Experimental design of type  FrF2 
## 8  runs
## 
## Factor settings (scale ends):
##    A  B  C  D
## 1 -1 -1 -1 -1
## 2  1  1  1  1
## 
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D
## 
## $generators
## [1] D=ABC
## 
## 
## Alias structure:
## $fi2
## [1] AB=CD AC=BD AD=BC
## 
## 
## The design itself:
##    A  B  C  D
## 1 -1 -1 -1 -1
## 2  1 -1 -1  1
## 3 -1  1 -1  1
## 4  1  1 -1 -1
## 5 -1 -1  1  1
## 6  1 -1  1 -1
## 7 -1  1  1 -1
## 8  1  1  1  1
## class=design, type= FrF2

a) How many factors did this experiment investigate? The answer is 4

b) What is the resolution of this design? The answer is resolution 4

c) Calculate the estimates of the main effects.

d) What is the complete defining relation for this design? (I) = ABCD

Question 8.48

Consider the following design in DOE text, 8.10 Problems Pg. 389:

a) What is the generator for column D? D = -ABC b) What is the generator for column E? E = BC c) If this design were folded over, what is the resolution of the combined design? IV

Question 8.60

Consider a partial fold over for the \(2^{7-4}\) resolution III design. Suppose that the partial fold over of this design is constructed using column A ( + signs only). Determine the alias relationships in the combined design.

The alias relationships are shown below

## $legend
## [1] A=A    B=B    C=C    D=fold E=D    F=E    G=F    H=G   
## 
## $main
## [1] B=CG=FH C=BG=EH E=CH=FG F=BH=EG G=BC=EF H=BF=CE
## 
## $fi2
## [1] AB=-DE         AC=-DF         AD=-BE=-CF=-GH AE=-BD         AF=-CD        
## [6] AG=-DH         AH=-DG

## Question 8.2

library(FrF2)
des.res<-FrF2(nfactors = 4,resolution =3,randomize = FALSE)
#aliasprint(des.res)
response<-c(7.037,16.867,13.876,17.273,11.846,4.368,9.360,15.653)
des.res<-add.response(des.res,response)
summary(des.res)

summary(lm(response~A*B*C*D,des.res))

DanielPlot(des.res,half=TRUE)

MEPlot(des.res,show.alias=TRUE)

#str(des.res)
model<-aov(response~A*B*C*D, data = des.res)
summary(model)

## Question 8.24
des.res<-FrF2(nfactors = 5,resolution =4,randomize = FALSE)
aliasprint(des.res)
summary(des.res)

## Question 8.25
t<-c("(I)","ag","bg","ab","cfg","acf","bcf","abcfg","df","adfg","bdfg","abdf","cdg","acd","bcd","abcdg","ef","aefg","befg","abef","ceg","ace","bce","abceg","de","adeg","bdeg","abde","cdefg","acdef","bcdef","abcdefg")
ACE<-c(-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1)
BFG<-c(-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1)
blocks<-c(1,4,1,4,3,2,3,2,2,3,2,3,4,1,4,1,4,1,4,1,2,3,2,3,3,2,3,2,1,4,1,4)
length(BFG)
data.frame(t,ACE,BFG,blocks)

## Question 8.28

des.res<-FrF2(nfactors = 6,resolution =4,randomize = FALSE)
summary(des.res)

aliasprint(des.res)

camber<-c(629,192,176,223,223,920,389,900,201,341,126,640,455,371,603,460)
des.res<-add.response(des.res,camber)
summary(lm(des.res))

A<-c(rep(c(-1,1), 8))
B<-c(rep(c(-1,-1,+1,+1), 4))
C<-c(rep(c(-1,-1,-1,-1,+1,+1,+1,+1),2))
D<-c(rep(c(-1,-1,-1,-1,-1,-1,-1,-1,+1,+1,+1,+1,+1,+1,+1,+1),1))
E<-c(rep(c(-1,1,1,-1,1,-1,-1,1),2))
FF<-c(rep(c(-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1),1))

dat<-data.frame(A,B,C,D,E,FF,camber)
summary(u<-lm(camber~A*B*C*D*E*FF,data=dat))

DanielPlot(des.res,half=FALSE, main = "Design Generated Normal Plot for Camber")
DanielPlot(u,half=FALSE, main = "Experimenter Design Normal Plot for Camber")
`
MEPlot(des.res,show.alias=TRUE,main ="Main Effects plot for design generated ")
MEPlot(u,show.alias=TRUE, main = "Main Effects plot for experimenter's design")

model<-aov(camber~A+C+D+E, data = des.res)
summary(model)

model<-aov(camber~A+C+E+FF, data = dat)
summary(model)

camber2<-c(24.418, 20.976, 4.083, 25.025, 22.410, 63.639, 16.029, 39.420, 26.725, 50.341, 7.681, 20.083, 31.120, 29.510, 6.750, 17.450)
dat2<-(A,B,C,D,E,FF)
summary(v<-lm(camber2~A*B*C*D*E*FF, data = dat2))

DanielPlot(v,half=FALSE)

MEPlot(v,show.alias=TRUE)

CD<-C*D
CD<-as.factor(CD)
DE<-as.factor(DE)
DE<-D*E

model2<-aov(camber2~A+B+FF+CD, data = dat2)
summary(model2)


## Question 8.40
des.res<-FrF2(nfactors = 4,resolution =4,randomize = FALSE)
#aliasprint(des.res)
des.res
summary(des.res)
Y<-C(8,10,12,7,13,6,5,11)

## Question 8.60
des.res<-FrF2(nfactors = 7,resolution =3,randomize = FALSE)
#summary(des.res)
newdesign<-fold.design(des.res,column=1)
aliasprint(newdesign)
summary(newdesign)