Answer 8.2

The required design is a 24-1 with I=ABCD.

design.res6.7 <- FrF2(nfactors=4, resolution=4, randomize=FALSE)
Response <- c(7.037, 16.867, 13.876, 17.273, 11.846, 4.368, 9.360, 15.653)
design.reponse6.7 <- add.response(design.res6.7, Response)
design.reponse6.7
##    A  B  C  D Response
## 1 -1 -1 -1 -1    7.037
## 2  1 -1 -1  1   16.867
## 3 -1  1 -1  1   13.876
## 4  1  1 -1 -1   17.273
## 5 -1 -1  1  1   11.846
## 6  1 -1  1 -1    4.368
## 7 -1  1  1 -1    9.360
## 8  1  1  1  1   15.653
## class=design, type= FrF2
aliasprint(design.reponse6.7)
## $legend
## [1] A=A B=B C=C D=D
## 
## $main
## character(0)
## 
## $fi2
## [1] AB=CD AC=BD AD=BC

Hence, we see that this is a resolution 4 design and so the main effects are not aliased with other two interactions.

summary(design.reponse6.7)
## Call:
## FrF2(nfactors = 4, resolution = 4, randomize = FALSE)
## 
## Experimental design of type  FrF2 
## 8  runs
## 
## Factor settings (scale ends):
##    A  B  C  D
## 1 -1 -1 -1 -1
## 2  1  1  1  1
## 
## Responses:
## [1] Response
## 
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D
## 
## $generators
## [1] D=ABC
## 
## 
## Alias structure:
## $fi2
## [1] AB=CD AC=BD AD=BC
## 
## 
## The design itself:
##    A  B  C  D Response
## 1 -1 -1 -1 -1    7.037
## 2  1 -1 -1  1   16.867
## 3 -1  1 -1  1   13.876
## 4  1  1 -1 -1   17.273
## 5 -1 -1  1  1   11.846
## 6  1 -1  1 -1    4.368
## 7 -1  1  1 -1    9.360
## 8  1  1  1  1   15.653
## class=design, type= FrF2
DanielPlot(design.reponse6.7)

Therefore, we see that none of the factors are significant.

Answer 8.24

design.reponse8.24 <- FrF2(nfactors = 5, resolution = 5 ,randomize = FALSE)
design.reponse8.24
##     A  B  C  D  E
## 1  -1 -1 -1 -1  1
## 2   1 -1 -1 -1 -1
## 3  -1  1 -1 -1 -1
## 4   1  1 -1 -1  1
## 5  -1 -1  1 -1 -1
## 6   1 -1  1 -1  1
## 7  -1  1  1 -1  1
## 8   1  1  1 -1 -1
## 9  -1 -1 -1  1 -1
## 10  1 -1 -1  1  1
## 11 -1  1 -1  1  1
## 12  1  1 -1  1 -1
## 13 -1 -1  1  1  1
## 14  1 -1  1  1 -1
## 15 -1  1  1  1 -1
## 16  1  1  1  1  1
## class=design, type= FrF2
aliasprint(design.reponse8.24)
## $legend
## [1] A=A B=B C=C D=D E=E
## 
## [[2]]
## [1] no aliasing among main effects and 2fis
summary(design.reponse8.24)
## Call:
## FrF2(nfactors = 5, resolution = 5, randomize = FALSE)
## 
## Experimental design of type  FrF2 
## 16  runs
## 
## Factor settings (scale ends):
##    A  B  C  D  E
## 1 -1 -1 -1 -1 -1
## 2  1  1  1  1  1
## 
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D E=E
## 
## $generators
## [1] E=ABCD
## 
## 
## Alias structure:
## [[1]]
## [1] no aliasing among main effects and 2fis
## 
## 
## The design itself:
##     A  B  C  D  E
## 1  -1 -1 -1 -1  1
## 2   1 -1 -1 -1 -1
## 3  -1  1 -1 -1 -1
## 4   1  1 -1 -1  1
## 5  -1 -1  1 -1 -1
## 6   1 -1  1 -1  1
## 7  -1  1  1 -1  1
## 8   1  1  1 -1 -1
## 9  -1 -1 -1  1 -1
## 10  1 -1 -1  1  1
## 11 -1  1 -1  1  1
## 12  1  1 -1  1 -1
## 13 -1 -1  1  1  1
## 14  1 -1  1  1 -1
## 15 -1  1  1  1 -1
## 16  1  1  1  1  1
## class=design, type= FrF2

The above is the design summary. We see that AB & CDE factors are confounded within blocks.

AB <- c("+","-","-","+","+","-","-","+","+","-","-","+","+","-","-","+")
Blocks <- c(1,2,2,1,1,2,2,1,1,2,2,1,1,2,2,1)
Dat<-data.frame(design.reponse8.24, AB, Blocks)
Dat
##     A  B  C  D  E AB Blocks
## 1  -1 -1 -1 -1  1  +      1
## 2   1 -1 -1 -1 -1  -      2
## 3  -1  1 -1 -1 -1  -      2
## 4   1  1 -1 -1  1  +      1
## 5  -1 -1  1 -1 -1  +      1
## 6   1 -1  1 -1  1  -      2
## 7  -1  1  1 -1  1  -      2
## 8   1  1  1 -1 -1  +      1
## 9  -1 -1 -1  1 -1  +      1
## 10  1 -1 -1  1  1  -      2
## 11 -1  1 -1  1  1  -      2
## 12  1  1 -1  1 -1  +      1
## 13 -1 -1  1  1  1  +      1
## 14  1 -1  1  1 -1  -      2
## 15 -1  1  1  1 -1  -      2
## 16  1  1  1  1  1  +      1

Hence, we see that no main effects are confounded within the blocks.

Answer 8.25

design.reponse8.25 <- FrF2(nfactors=7, blocks=4, nruns=32, resolution = 4, randomize=FALSE)
## Warning in FrF2(nfactors = 7, blocks = 4, nruns = 32, resolution = 4, randomize
## = FALSE): resolution is ignored, if nruns is given.
summary(design.reponse8.25)
## Call:
## FrF2(nfactors = 7, blocks = 4, nruns = 32, resolution = 4, randomize = FALSE)
## 
## Experimental design of type  FrF2.blocked 
## 32  runs
## blocked design with  4  blocks of size  8 
## 
## Factor settings (scale ends):
##    A  B  C  D  E  F  G
## 1 -1 -1 -1 -1 -1 -1 -1
## 2  1  1  1  1  1  1  1
## 
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D E=E F=F G=G
## 
## $`generators for design itself`
## [1] F=ABC G=ABD
## 
## $`block generators`
## [1] ACD ABE
## 
## 
## Alias structure:
## $fi2
## [1] AB=CF=DG AC=BF    AD=BG    AF=BC    AG=BD    CD=FG    CG=DF   
## 
## Aliased with block main effects:
## [1] none
## 
## The design itself:
##   run.no run.no.std.rp Blocks  A  B  C  D  E  F  G
## 1      1         1.1.1      1 -1 -1 -1 -1 -1 -1 -1
## 2      2         7.1.2      1 -1 -1  1  1 -1  1  1
## 3      3        10.1.3      1 -1  1 -1 -1  1  1  1
## 4      4        16.1.4      1 -1  1  1  1  1 -1 -1
## 5      5        20.1.5      1  1 -1 -1  1  1  1 -1
## 6      6        22.1.6      1  1 -1  1 -1  1 -1  1
## 7      7        27.1.7      1  1  1 -1  1 -1 -1  1
## 8      8        29.1.8      1  1  1  1 -1 -1  1 -1
##    run.no run.no.std.rp Blocks  A  B  C  D  E  F  G
## 9       9         2.2.1      2 -1 -1 -1 -1  1 -1 -1
## 10     10         8.2.2      2 -1 -1  1  1  1  1  1
## 11     11         9.2.3      2 -1  1 -1 -1 -1  1  1
## 12     12        15.2.4      2 -1  1  1  1 -1 -1 -1
## 13     13        19.2.5      2  1 -1 -1  1 -1  1 -1
## 14     14        21.2.6      2  1 -1  1 -1 -1 -1  1
## 15     15        28.2.7      2  1  1 -1  1  1 -1  1
## 16     16        30.2.8      2  1  1  1 -1  1  1 -1
##    run.no run.no.std.rp Blocks  A  B  C  D  E  F  G
## 17     17         3.3.1      3 -1 -1 -1  1 -1 -1  1
## 18     18         5.3.2      3 -1 -1  1 -1 -1  1 -1
## 19     19        12.3.3      3 -1  1 -1  1  1  1 -1
## 20     20        14.3.4      3 -1  1  1 -1  1 -1  1
## 21     21        18.3.5      3  1 -1 -1 -1  1  1  1
## 22     22        24.3.6      3  1 -1  1  1  1 -1 -1
## 23     23        25.3.7      3  1  1 -1 -1 -1 -1 -1
## 24     24        31.3.8      3  1  1  1  1 -1  1  1
##    run.no run.no.std.rp Blocks  A  B  C  D  E  F  G
## 25     25         4.4.1      4 -1 -1 -1  1  1 -1  1
## 26     26         6.4.2      4 -1 -1  1 -1  1  1 -1
## 27     27        11.4.3      4 -1  1 -1  1 -1  1 -1
## 28     28        13.4.4      4 -1  1  1 -1 -1 -1  1
## 29     29        17.4.5      4  1 -1 -1 -1 -1  1  1
## 30     30        23.4.6      4  1 -1  1  1 -1 -1 -1
## 31     31        26.4.7      4  1  1 -1 -1  1 -1 -1
## 32     32        32.4.8      4  1  1  1  1  1  1  1
## class=design, type= FrF2.blocked 
## NOTE: columns run.no and run.no.std.rp  are annotation, 
##  not part of the data frame
aliasprint(design.reponse8.25)
## $legend
## [1] A=A B=B C=C D=D E=E F=F G=G
## 
## $main
## character(0)
## 
## $fi2
## [1] AB=CF=DG AC=BF    AD=BG    AF=BC    AG=BD    CD=FG    CG=DF
summary(design.reponse8.25)
## Call:
## FrF2(nfactors = 7, blocks = 4, nruns = 32, resolution = 4, randomize = FALSE)
## 
## Experimental design of type  FrF2.blocked 
## 32  runs
## blocked design with  4  blocks of size  8 
## 
## Factor settings (scale ends):
##    A  B  C  D  E  F  G
## 1 -1 -1 -1 -1 -1 -1 -1
## 2  1  1  1  1  1  1  1
## 
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D E=E F=F G=G
## 
## $`generators for design itself`
## [1] F=ABC G=ABD
## 
## $`block generators`
## [1] ACD ABE
## 
## 
## Alias structure:
## $fi2
## [1] AB=CF=DG AC=BF    AD=BG    AF=BC    AG=BD    CD=FG    CG=DF   
## 
## Aliased with block main effects:
## [1] none
## 
## The design itself:
##   run.no run.no.std.rp Blocks  A  B  C  D  E  F  G
## 1      1         1.1.1      1 -1 -1 -1 -1 -1 -1 -1
## 2      2         7.1.2      1 -1 -1  1  1 -1  1  1
## 3      3        10.1.3      1 -1  1 -1 -1  1  1  1
## 4      4        16.1.4      1 -1  1  1  1  1 -1 -1
## 5      5        20.1.5      1  1 -1 -1  1  1  1 -1
## 6      6        22.1.6      1  1 -1  1 -1  1 -1  1
## 7      7        27.1.7      1  1  1 -1  1 -1 -1  1
## 8      8        29.1.8      1  1  1  1 -1 -1  1 -1
##    run.no run.no.std.rp Blocks  A  B  C  D  E  F  G
## 9       9         2.2.1      2 -1 -1 -1 -1  1 -1 -1
## 10     10         8.2.2      2 -1 -1  1  1  1  1  1
## 11     11         9.2.3      2 -1  1 -1 -1 -1  1  1
## 12     12        15.2.4      2 -1  1  1  1 -1 -1 -1
## 13     13        19.2.5      2  1 -1 -1  1 -1  1 -1
## 14     14        21.2.6      2  1 -1  1 -1 -1 -1  1
## 15     15        28.2.7      2  1  1 -1  1  1 -1  1
## 16     16        30.2.8      2  1  1  1 -1  1  1 -1
##    run.no run.no.std.rp Blocks  A  B  C  D  E  F  G
## 17     17         3.3.1      3 -1 -1 -1  1 -1 -1  1
## 18     18         5.3.2      3 -1 -1  1 -1 -1  1 -1
## 19     19        12.3.3      3 -1  1 -1  1  1  1 -1
## 20     20        14.3.4      3 -1  1  1 -1  1 -1  1
## 21     21        18.3.5      3  1 -1 -1 -1  1  1  1
## 22     22        24.3.6      3  1 -1  1  1  1 -1 -1
## 23     23        25.3.7      3  1  1 -1 -1 -1 -1 -1
## 24     24        31.3.8      3  1  1  1  1 -1  1  1
##    run.no run.no.std.rp Blocks  A  B  C  D  E  F  G
## 25     25         4.4.1      4 -1 -1 -1  1  1 -1  1
## 26     26         6.4.2      4 -1 -1  1 -1  1  1 -1
## 27     27        11.4.3      4 -1  1 -1  1 -1  1 -1
## 28     28        13.4.4      4 -1  1  1 -1 -1 -1  1
## 29     29        17.4.5      4  1 -1 -1 -1 -1  1  1
## 30     30        23.4.6      4  1 -1  1  1 -1 -1 -1
## 31     31        26.4.7      4  1  1 -1 -1  1 -1 -1
## 32     32        32.4.8      4  1  1  1  1  1  1  1
## class=design, type= FrF2.blocked 
## NOTE: columns run.no and run.no.std.rp  are annotation, 
##  not part of the data frame

The above is the design summary. We see that ACE, BFG & ABCEFG factors are confounded within blocks. Also, no main effects or two factor interactions are confounded within the blocks.

Answer 8.28

design.reponse8.28 <- FrF2(nfactors = 6, resolution = 4, randomize = FALSE)
design.reponse8.28
##     A  B  C  D  E  F
## 1  -1 -1 -1 -1 -1 -1
## 2   1 -1 -1 -1  1  1
## 3  -1  1 -1 -1  1  1
## 4   1  1 -1 -1 -1 -1
## 5  -1 -1  1 -1  1 -1
## 6   1 -1  1 -1 -1  1
## 7  -1  1  1 -1 -1  1
## 8   1  1  1 -1  1 -1
## 9  -1 -1 -1  1 -1  1
## 10  1 -1 -1  1  1 -1
## 11 -1  1 -1  1  1 -1
## 12  1  1 -1  1 -1  1
## 13 -1 -1  1  1  1  1
## 14  1 -1  1  1 -1 -1
## 15 -1  1  1  1 -1 -1
## 16  1  1  1  1  1  1
## class=design, type= FrF2
summary(design.reponse8.28)
## Call:
## FrF2(nfactors = 6, resolution = 4, randomize = FALSE)
## 
## Experimental design of type  FrF2 
## 16  runs
## 
## Factor settings (scale ends):
##    A  B  C  D  E  F
## 1 -1 -1 -1 -1 -1 -1
## 2  1  1  1  1  1  1
## 
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D E=E F=F
## 
## $generators
## [1] E=ABC F=ABD
## 
## 
## Alias structure:
## $fi2
## [1] AB=CE=DF AC=BE    AD=BF    AE=BC    AF=BD    CD=EF    CF=DE   
## 
## 
## The design itself:
##     A  B  C  D  E  F
## 1  -1 -1 -1 -1 -1 -1
## 2   1 -1 -1 -1  1  1
## 3  -1  1 -1 -1  1  1
## 4   1  1 -1 -1 -1 -1
## 5  -1 -1  1 -1  1 -1
## 6   1 -1  1 -1 -1  1
## 7  -1  1  1 -1 -1  1
## 8   1  1  1 -1  1 -1
## 9  -1 -1 -1  1 -1  1
## 10  1 -1 -1  1  1 -1
## 11 -1  1 -1  1  1 -1
## 12  1  1 -1  1 -1  1
## 13 -1 -1  1  1  1  1
## 14  1 -1  1  1 -1 -1
## 15 -1  1  1  1 -1 -1
## 16  1  1  1  1  1  1
## class=design, type= FrF2

(a). This is a 16 run design with 2^(6-2).

aliasprint(design.reponse8.28)
## $legend
## [1] A=A B=B C=C D=D E=E F=F
## 
## $main
## character(0)
## 
## $fi2
## [1] AB=CE=DF AC=BE    AD=BF    AE=BC    AF=BD    CD=EF    CF=DE

(b). The defining relation is I=ABCE=ACDF=BDEF.

LaminationTemp <- c(rep(c("-1","1"),8)) 
LaminationTime <- c(rep(c("-1","-1","1","1"),4))
LaminationPressure <- c(rep(c("-1","-1","-1","-1","1","1","1","1"),2))
FiringTemp <- c(rep(c("-1","-1","-1","-1","-1","-1","-1","-1","1","1","1","1","1","1","1","1"),1))
FiringCycleTime <- c(rep(c("-1","1","1","-1","1","-1","-1","1"),2))
FiringDewPoint <- c(rep(c("-1","1","-1","1","1","-1","1","-1"),2))
Response2 <- c(0.0167,0.0062,0.0041,0.0073,0.0047,0.0219,0.0121,0.0255,0.0032,0.0078,0.0043,0.0186,0.011,0.0065,0.0155,0.0093,0.0128,0.0066,0.0043,0.0081,0.0047,0.0258,0.009,0.025,0.0023,0.0158,0.0027,0.0137,0.0086,0.0109,0.0158,0.0124,0.0149,0.0044,0.0042,0.0039,0.004,0.0147,0.0092,0.0226,0.0077,0.006,0.0028,0.0158,0.0101,0.0126,0.0145,0.011,0.0185,0.002,0.005,0.003,0.0089,0.0296,0.0086,0.0169,0.0069,0.0045,0.0028,0.0159,0.0158,0.0071,0.0145,0.0133)
Total <- c(629,192,176,223,223,920,389,900,201,341,126,640,455,371,603,460)
Mean <- c(157.25,48,44,55.75,55.75,230,97.25,225,50.25,85.25,31.5,160,113.75,92.75,150.75,115)
Standard <- c(24.418,20.976,4.083,25.025,22.41,63.639,16.029,39.42,26.725,50.341,7.681,20.083,31.12,29.51,6.75,17.45
)
Dat8.28Q <- cbind(LaminationTemp,LaminationTime,LaminationPressure,FiringTemp,FiringCycleTime,FiringDewPoint,Response2,Total,Mean,Standard)
Dat8.28Q <- as.data.frame(Dat8.28Q)
Dat8.28Q
##    LaminationTemp LaminationTime LaminationPressure FiringTemp FiringCycleTime
## 1              -1             -1                 -1         -1              -1
## 2               1             -1                 -1         -1               1
## 3              -1              1                 -1         -1               1
## 4               1              1                 -1         -1              -1
## 5              -1             -1                  1         -1               1
## 6               1             -1                  1         -1              -1
## 7              -1              1                  1         -1              -1
## 8               1              1                  1         -1               1
## 9              -1             -1                 -1          1              -1
## 10              1             -1                 -1          1               1
## 11             -1              1                 -1          1               1
## 12              1              1                 -1          1              -1
## 13             -1             -1                  1          1               1
## 14              1             -1                  1          1              -1
## 15             -1              1                  1          1              -1
## 16              1              1                  1          1               1
## 17             -1             -1                 -1         -1              -1
## 18              1             -1                 -1         -1               1
## 19             -1              1                 -1         -1               1
## 20              1              1                 -1         -1              -1
## 21             -1             -1                  1         -1               1
## 22              1             -1                  1         -1              -1
## 23             -1              1                  1         -1              -1
## 24              1              1                  1         -1               1
## 25             -1             -1                 -1          1              -1
## 26              1             -1                 -1          1               1
## 27             -1              1                 -1          1               1
## 28              1              1                 -1          1              -1
## 29             -1             -1                  1          1               1
## 30              1             -1                  1          1              -1
## 31             -1              1                  1          1              -1
## 32              1              1                  1          1               1
## 33             -1             -1                 -1         -1              -1
## 34              1             -1                 -1         -1               1
## 35             -1              1                 -1         -1               1
## 36              1              1                 -1         -1              -1
## 37             -1             -1                  1         -1               1
## 38              1             -1                  1         -1              -1
## 39             -1              1                  1         -1              -1
## 40              1              1                  1         -1               1
## 41             -1             -1                 -1          1              -1
## 42              1             -1                 -1          1               1
## 43             -1              1                 -1          1               1
## 44              1              1                 -1          1              -1
## 45             -1             -1                  1          1               1
## 46              1             -1                  1          1              -1
## 47             -1              1                  1          1              -1
## 48              1              1                  1          1               1
## 49             -1             -1                 -1         -1              -1
## 50              1             -1                 -1         -1               1
## 51             -1              1                 -1         -1               1
## 52              1              1                 -1         -1              -1
## 53             -1             -1                  1         -1               1
## 54              1             -1                  1         -1              -1
## 55             -1              1                  1         -1              -1
## 56              1              1                  1         -1               1
## 57             -1             -1                 -1          1              -1
## 58              1             -1                 -1          1               1
## 59             -1              1                 -1          1               1
## 60              1              1                 -1          1              -1
## 61             -1             -1                  1          1               1
## 62              1             -1                  1          1              -1
## 63             -1              1                  1          1              -1
## 64              1              1                  1          1               1
##    FiringDewPoint Response2 Total   Mean Standard
## 1              -1    0.0167   629 157.25   24.418
## 2               1    0.0062   192     48   20.976
## 3              -1    0.0041   176     44    4.083
## 4               1    0.0073   223  55.75   25.025
## 5               1    0.0047   223  55.75    22.41
## 6              -1    0.0219   920    230   63.639
## 7               1    0.0121   389  97.25   16.029
## 8              -1    0.0255   900    225    39.42
## 9              -1    0.0032   201  50.25   26.725
## 10              1    0.0078   341  85.25   50.341
## 11             -1    0.0043   126   31.5    7.681
## 12              1    0.0186   640    160   20.083
## 13              1     0.011   455 113.75    31.12
## 14             -1    0.0065   371  92.75    29.51
## 15              1    0.0155   603 150.75     6.75
## 16             -1    0.0093   460    115    17.45
## 17             -1    0.0128   629 157.25   24.418
## 18              1    0.0066   192     48   20.976
## 19             -1    0.0043   176     44    4.083
## 20              1    0.0081   223  55.75   25.025
## 21              1    0.0047   223  55.75    22.41
## 22             -1    0.0258   920    230   63.639
## 23              1     0.009   389  97.25   16.029
## 24             -1     0.025   900    225    39.42
## 25             -1    0.0023   201  50.25   26.725
## 26              1    0.0158   341  85.25   50.341
## 27             -1    0.0027   126   31.5    7.681
## 28              1    0.0137   640    160   20.083
## 29              1    0.0086   455 113.75    31.12
## 30             -1    0.0109   371  92.75    29.51
## 31              1    0.0158   603 150.75     6.75
## 32             -1    0.0124   460    115    17.45
## 33             -1    0.0149   629 157.25   24.418
## 34              1    0.0044   192     48   20.976
## 35             -1    0.0042   176     44    4.083
## 36              1    0.0039   223  55.75   25.025
## 37              1     0.004   223  55.75    22.41
## 38             -1    0.0147   920    230   63.639
## 39              1    0.0092   389  97.25   16.029
## 40             -1    0.0226   900    225    39.42
## 41             -1    0.0077   201  50.25   26.725
## 42              1     0.006   341  85.25   50.341
## 43             -1    0.0028   126   31.5    7.681
## 44              1    0.0158   640    160   20.083
## 45              1    0.0101   455 113.75    31.12
## 46             -1    0.0126   371  92.75    29.51
## 47              1    0.0145   603 150.75     6.75
## 48             -1     0.011   460    115    17.45
## 49             -1    0.0185   629 157.25   24.418
## 50              1     0.002   192     48   20.976
## 51             -1     0.005   176     44    4.083
## 52              1     0.003   223  55.75   25.025
## 53              1    0.0089   223  55.75    22.41
## 54             -1    0.0296   920    230   63.639
## 55              1    0.0086   389  97.25   16.029
## 56             -1    0.0169   900    225    39.42
## 57             -1    0.0069   201  50.25   26.725
## 58              1    0.0045   341  85.25   50.341
## 59             -1    0.0028   126   31.5    7.681
## 60              1    0.0159   640    160   20.083
## 61              1    0.0158   455 113.75    31.12
## 62             -1    0.0071   371  92.75    29.51
## 63              1    0.0145   603 150.75     6.75
## 64             -1    0.0133   460    115    17.45
Dat8.28Q$LaminationTemp <- as.fixed(Dat8.28Q$LaminationTemp)
Dat8.28Q$LaminationTime <- as.fixed(Dat8.28Q$LaminationTime)
Dat8.28Q$LaminationPressure <- as.fixed(Dat8.28Q$LaminationPressure)
Dat8.28Q$FiringTemp <- as.fixed(Dat8.28Q$FiringTemp)
Dat8.28Q$FiringDewPoint <- as.fixed(Dat8.28Q$FiringDewPoint)
Dat8.28Q$FiringCycleTime <- as.fixed(Dat8.28Q$FiringCycleTime)
Model8.28Q <- aov(Response2~LaminationTemp*LaminationTime*LaminationPressure*FiringTemp*FiringCycleTime*FiringDewPoint,data = Dat8.28Q)
summary(Model8.28Q)
##                                              Df    Sum Sq   Mean Sq F value
## LaminationTemp                                1 0.0002422 0.0002422  27.793
## LaminationTime                                1 0.0000053 0.0000053   0.614
## LaminationPressure                            1 0.0005023 0.0005023  57.644
## FiringTemp                                    1 0.0000323 0.0000323   3.712
## FiringCycleTime                               1 0.0001901 0.0001901  21.815
## FiringDewPoint                                1 0.0000803 0.0000803   9.218
## LaminationTemp:LaminationTime                 1 0.0000587 0.0000587   6.738
## LaminationTime:LaminationPressure             1 0.0000527 0.0000527   6.053
## LaminationTemp:FiringTemp                     1 0.0000239 0.0000239   2.741
## LaminationTime:FiringTemp                     1 0.0000849 0.0000849   9.739
## LaminationPressure:FiringTemp                 1 0.0000622 0.0000622   7.139
## FiringTemp:FiringCycleTime                    1 0.0000088 0.0000088   1.007
## FiringTemp:FiringDewPoint                     1 0.0009602 0.0009602 110.192
## LaminationTemp:LaminationTime:FiringTemp      1 0.0000000 0.0000000   0.005
## LaminationTime:LaminationPressure:FiringTemp  1 0.0000481 0.0000481   5.523
## Residuals                                    48 0.0004183 0.0000087        
##                                                Pr(>F)    
## LaminationTemp                               3.17e-06 ***
## LaminationTime                                0.43725    
## LaminationPressure                           9.14e-10 ***
## FiringTemp                                    0.05995 .  
## FiringCycleTime                              2.45e-05 ***
## FiringDewPoint                                0.00387 ** 
## LaminationTemp:LaminationTime                 0.01249 *  
## LaminationTime:LaminationPressure             0.01754 *  
## LaminationTemp:FiringTemp                     0.10431    
## LaminationTime:FiringTemp                     0.00305 ** 
## LaminationPressure:FiringTemp                 0.01027 *  
## FiringTemp:FiringCycleTime                    0.32062    
## FiringTemp:FiringDewPoint                    5.05e-14 ***
## LaminationTemp:LaminationTime:FiringTemp      0.94291    
## LaminationTime:LaminationPressure:FiringTemp  0.02293 *  
## Residuals                                                
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(c) variables A, C, E, and F affect average camber.

(d) A, B, F, and AF interaction affect the variability in camber measurements.

camber <-  c(24.418,20.976,4.083,25.025,22.41,63.639,16.029,39.42,26.725,50.341,7.681,20.083,31.12,29.51,6.75,17.45)
A <- c(rep(c("-1","1"),8)) 
B <- c(rep(c("-1","-1","1","1"),4))
C <- c(rep(c("-1","-1","-1","-1","1","1","1","1"),2))
D <- c(rep(c("-1","-1","-1","-1","-1","-1","-1","-1","1","1","1","1","1","1","1","1"),1))
E <- c(rep(c("-1","1","1","-1","1","-1","-1","1"),2))
F<- c(rep(c("-1","1","-1","1","1","-1","1","-1"),2))
Dat8.28C <- data.frame(A,B,C,D,E,F,camber)
Model8.28C <- lm(camber~A*B*C*D*E*F,data = Dat8.28C)

DanielPlot(Model8.28C)

A & B affect the camber measurements.

Answer 8.40

(a) 4 factors

(b) resolution is 4

(c) Effects estimate

One <- c(8)
AD <- c(10)
BD <- c(12)
AB <- c(7)
CD <- c(13)
AC <- c(6)
BC <- c(5)
ABCD <- c(11)


EffectA <- (2*(AD+AB+AC+ABCD-One-BD-CD-BC))/(16)
EffectA
## [1] -0.5

(d) The complete defining relation is I = ABCD.

Answer 8.48

(a) D = –ABC

(b) E = BC

(c) Resolution of the combined design is 4.

Answer 8.60

design.reponse6.7 <- FrF2(nfactors=7,resolution=3,randomize=FALSE)
design.reponse6.7
##    A  B  C  D  E  F  G
## 1 -1 -1 -1  1  1  1 -1
## 2  1 -1 -1 -1 -1  1  1
## 3 -1  1 -1 -1  1 -1  1
## 4  1  1 -1  1 -1 -1 -1
## 5 -1 -1  1  1 -1 -1  1
## 6  1 -1  1 -1  1 -1 -1
## 7 -1  1  1 -1 -1  1 -1
## 8  1  1  1  1  1  1  1
## class=design, type= FrF2
design.reponse6.7b <- fold.design(design.reponse6.7,column=1)
design.reponse6.7b
##     A  B  C     fold  D  E  F  G
## 1  -1 -1 -1 original  1  1  1 -1
## 2   1 -1 -1 original -1 -1  1  1
## 3  -1  1 -1 original -1  1 -1  1
## 4   1  1 -1 original  1 -1 -1 -1
## 5  -1 -1  1 original  1 -1 -1  1
## 6   1 -1  1 original -1  1 -1 -1
## 7  -1  1  1 original -1 -1  1 -1
## 8   1  1  1 original  1  1  1  1
## 9   1 -1 -1   mirror  1  1  1 -1
## 10 -1 -1 -1   mirror -1 -1  1  1
## 11  1  1 -1   mirror -1  1 -1  1
## 12 -1  1 -1   mirror  1 -1 -1 -1
## 13  1 -1  1   mirror  1 -1 -1  1
## 14 -1 -1  1   mirror -1  1 -1 -1
## 15  1  1  1   mirror -1 -1  1 -1
## 16 -1  1  1   mirror  1  1  1  1
## class=design, type= FrF2.folded
design.reponse6.7c <- design.reponse6.7b[-c(1,3,5,7,10,12,14,16),]
design.reponse6.7c
##    A  B  C     fold  D  E  F  G
## 2  1 -1 -1 original -1 -1  1  1
## 4  1  1 -1 original  1 -1 -1 -1
## 6  1 -1  1 original -1  1 -1 -1
## 8  1  1  1 original  1  1  1  1
## 9  1 -1 -1   mirror  1  1  1 -1
## 11 1  1 -1   mirror -1  1 -1  1
## 13 1 -1  1   mirror  1 -1 -1  1
## 15 1  1  1   mirror -1 -1  1 -1