Imagine if Americans switched from pounds to kilograms overnight.
There would be mass confusion!
\[ \small{ \frac{\partial C}{\partial t} = - v \frac{\partial C}{\partial x} + D_x \frac{\partial^2 C}{\partial x^2} + D_y \frac{\partial^2 C}{\partial y^2} + D_z \frac{\partial^2 C}{\partial z^2} - \lambda RC } \]
\[ \small{ \frac{\partial C}{\partial t} = - v \frac{\partial C}{\partial x} + D_x \frac{\partial^2 C}{\partial x^2} + D_y \frac{\partial^2 C}{\partial y^2} + D_z \frac{\partial^2 C}{\partial z^2} - \lambda RC } \]
Parameters
\[ \small{ \frac{\partial C}{\partial t} = - v \frac{\partial C}{\partial x} + D_x \frac{\partial^2 C}{\partial x^2} + D_y \frac{\partial^2 C}{\partial y^2} + D_z \frac{\partial^2 C}{\partial z^2} - \lambda RC } \]
\[ \small{ \frac{\partial C}{\partial t} = - v \frac{\partial C}{\partial x} + D_x \frac{\partial^2 C}{\partial x^2} + D_y \frac{\partial^2 C}{\partial y^2} + D_z \frac{\partial^2 C}{\partial z^2} - \lambda RC } \]
In many lakes there is a channel of flow from entrance to exit that is rectangular in shape, where advection is main way that pollution travels. Thus we start by assuming the following:
\[ \small{ \begin{aligned} \frac{\partial C}{\partial t} &= - v \frac{\partial C}{\partial x} + D_x \frac{\partial^2 C}{\partial x^2} + D_y \frac{\partial^2 C}{\partial y^2} + D_z \frac{\partial^2 C}{\partial z^2} - \lambda RC \\ \frac{\partial C}{\partial t} & = - v \frac{\partial C}{\partial x} \end{aligned} } \]
Applied to total mass of pollutant in section of width \( \Delta x \),
\[ \small{ \begin{Bmatrix}\mathrm{rate \, of \, change\, of} \\ \mathrm{pollutant \, mass} \\ \mathrm{in \, section}\end{Bmatrix} = \begin{Bmatrix} \mathrm{rate \, of \, pollutant} \\ \mathrm{mass \, entering} \\ \mathrm{section \, at \,} x \end{Bmatrix} -\begin{Bmatrix} \mathrm{rate \, of \, pollutant} \\ \mathrm{mass \, leaving \, section } \\ \mathrm{at \, }x+\Delta x\end{Bmatrix} } \]
\[ \small{ \begin{Bmatrix}\mathrm{rate \, of \, change\, of} \\ \mathrm{pollutant \, mass} \\ \mathrm{in \, section}\end{Bmatrix} = \begin{Bmatrix} \mathrm{rate \, of \, pollutant} \\ \mathrm{mass \, entering} \\ \mathrm{section \, at \,} x \end{Bmatrix} -\begin{Bmatrix} \mathrm{rate \, of \, pollutant} \\ \mathrm{mass \, leaving \, section } \\ \mathrm{at \, }x+\Delta x\end{Bmatrix} } \]
\[ \small{ \begin{aligned} A \Delta x \frac{ \partial C }{ \partial t } &= J(x, t)A - J(x + \Delta x, t)A \\ \\ \lim_{\Delta x \rightarrow 0} \frac{ \partial C }{ \partial t } &= - \lim_{\Delta x \rightarrow 0} \frac{ J(x + \Delta x, t) - J(x, t) }{ \Delta x } \\ \\ \frac{ \partial C }{ \partial t } &= - \frac{ \partial J }{ \partial x } \end{aligned}} \]
From the previous slide,
\[ \small{ \frac{ \partial C }{ \partial t } = - \frac{ \partial J }{ \partial x } = -\frac{F}{A}\frac{\partial C}{\partial x}} \]
In above equation, we used \( J = (F/A)C \), where
\[ \small{ \left[J\right] = \frac{kg}{A \cdot sec} , \,\, \left[\frac{F}{A}C\right] = \left(\frac{\frac{V}{sec}}{A}\right) \frac{kg}{V} = \frac{kg}{A \cdot sec}} \]
Thus \[ \small{ \frac{\partial C}{\partial t} = - v \frac{\partial C}{\partial x}, \,\,\, v = \frac{F}{A},\,\,\, [v] = \left[\frac{\frac{V}{sec}}{A }\right] = \frac{L_x}{sec} } \]
Boundary condition at \( x=a \), where pollution enters lake:
\[ \small{ C(a,t) = \frac{g(t)}{F} } \]
Unit check:
\[ \small{ \left[\frac{g(t)}{F}\right] = \frac{\frac{kg}{sec}}{\frac{V}{sec}} = \frac{kg}{V} } \]
We also assume an initial pollution concentration each point \( x \):
\[ \small{ C(x,0) = P(x) } \]
Our first order PDE boundary and initial value problem:
\[ \small{ \begin{aligned} \frac{\partial C}{\partial t} &= - v \frac{\partial C}{\partial x} \\ C(a,t) & = \frac{g(t)}{F} \\ C(x,0) & = P(x) \end{aligned}} \]
Figure: Blue curve = \( P(x) \), orange curve = \( g(t) \).
\[ \small{ \begin{aligned} \frac{\partial C}{\partial t} &= - v \frac{\partial C}{\partial x} \\ C(a,t) & = \frac{g(t)}{F} \\ C(x,0) & = P(x) \end{aligned}} \]
\[ \small{ \begin{aligned} \frac{\partial C}{\partial t} & = - v \frac{\partial C}{\partial x}\\ \frac{dx}{dt} & = v = F/A \end{aligned} } \]
\[ \small{x = vt + K } \]
From previous slide,
\[ \small{ \frac{\partial C}{\partial t} + v \frac{\partial C}{\partial x}=0, \, \frac{dx}{dt} = v, \, x = vt + K } \]
Applying chain rule to \( C(x,t) \),
\[ \small{ \begin{aligned} \frac{dC}{dt} &= \frac{\partial C}{\partial x} \frac{dx}{dt} + \frac{\partial C}{\partial t} \frac{dt}{dt} \\ &= \frac{\partial C}{\partial x}v + \frac{\partial C}{\partial t} \\ & = 0 \end{aligned} } \]
\( C(x,t) \) constant on \( x = vt + K \).
\[ \small{x = vt + K } \]
\( C(x,t) \) is constant on
\[ \small{x = vt + K, \,\, v = F/A } \]
\[ \small{ K = a } \]
\[ \small{t = \frac{A}{F}(x-a) } \]
Characteristics intersect \( x \)-axis at \( (K, 0) \) when
\[ \small{ t < \frac{A}{F}(x - a) } \]
\( C \) is constant on characteristic, so
\[ \small{ C(x,t) = C(x,0) = P(K) } \]
For \( \, \small{x = (F/A)t + K}\, \) in this case,
\[ \small{ C(x,t) = P\left(x - \frac{F}{A}t \right) } \]
Lines cross \( t \)-axis at \( (a, K_1) \) when
\[ \small{ t > \frac{A}{F}(x - a) } \] Then \[ \small{ t = \frac{A}{F} (x - a) + K_1 } \]
Since \( \, \small{t = K_1\,} \) at \( x=a \),
\[ \small{ \begin{aligned} C(a,t) &= \frac{g(K_1)}{F} \\ \therefore C(x,t) & = \frac{g(K_1)}{F} \end{aligned}} \]
Thus for \( (x,t) \) on this characteristic line,
\[ \small{ \begin{aligned} t &= \frac{A}{F} (x - a) + K_1 \\ C(x,t) & = \frac{g(K_1)}{F} = \frac{g \left(t - \frac{A}{F} (x - a) \right)}{F} \end{aligned}} \]
Concentration of pollutant for \( \, a \leq x \leq b, \, t \geq 0 \, \):
\[ \small{ C(x,t)=\left\{ \begin{array}{ll} P\left(x-\frac{F}{A}t\right), & \text{if } t<\frac{A}{F}(x-a) \\ g\left(t-\frac{A}{F}(x-a)\right), & \text{if } t>\frac{A}{F}(x-a) \end{array} \right. \\ } \]
Suppose initial and boundary conditions are given by
\[ \small{ \begin{aligned} C(x,0) & = P(x) = \frac{1}{4}(x-2)^2, \,\, 0 \leq x \leq 4\\ C(0,t) &= g(t) = e^{-(4-t)^2}, \,\, t \geq 0 \end{aligned}} \]
With \( v = 1 \), \( a = 0, b= 4 \), the solution
\[ \small{ C(x,t)=\left\{ \begin{array}{ll} P\left(x-vt\right), & \text{if } t<\frac{x-a}{v} \\ g\left(t-\frac{x-a}{v}\right), & \text{if } t>\frac{x-a}{v} \end{array} \right.} \]
becomes
\[ \small{ C(x,t)=\left\{ \begin{array}{ll} \frac{1}{4}\left(x-t-2\right)^2, & \text{if } t< x \\ e^{-(4-(t-x)^2)}, & \text{if } t > x \end{array} \right.} \]
\[ \small{ C(x,t)=\left\{ \begin{array}{ll} \frac{1}{4}\left(x-t-2\right)^2, & \text{if } t< x \\ e^{-(4-(t-x)^2)}, & \text{if } t > x \end{array} \right.} \]
\[ \small{ C(x,t)=\left\{ \begin{array}{ll} \frac{1}{4}\left(x-t-2\right)^2, & \text{if } t< x \\ e^{-(4-(t-x)^2)}, & \text{if } t > x \end{array} \right.} \]
\[ \small{ C(x,t)=\left\{ \begin{array}{ll} \frac{1}{4}\left(x-t-2\right)^2, & \text{if } t< x \\ e^{-(4-(t-x)^2)}, & \text{if } t > x \end{array} \right.} \]
\[ \small{ C(x,t)=\left\{ \begin{array}{ll} \frac{1}{4}\left(x-t-2\right)^2, & \text{if } t< x \\ e^{-(4-(t-x)^2)}, & \text{if } t > x \end{array} \right.} \]
Suppose only freshwater enters lake, with \( g(t) = 0 \).
\[ \small{ C(x,t)=\left\{ \begin{array}{ll} 0, & \text{if } t>\frac{x-a}{v} \\ P\left(x-vt\right), & \text{if } t<\frac{x-a}{v} \end{array} \right.} \]
For \( v=1 \), lake is clean after
\[ \small{ t = \frac{b - a}{v} \Leftrightarrow x = b } \]
How long will it take a lake to decrease to \( 5\% \) of its current level of pollutant, assuming \( \, g(t) = 0 \) and \( P(x) \neq 0 \)?
Lake has constant width and depth, so mass given by
\[ \small{ M=\iiint_E C(x, t) dV = A \int_a^b P(x-vt) dx } \]
\[ \small{ \begin{aligned} \int_a^b P(x-vt) dx &= 0.05 \int_a^b P(x) dx \\ \int_{a-vt}^{b-vt} P(u)du &= 0.05 \int_a^b P(x) dx \\ \end{aligned} } \]
\[ \small{ \int_{a-vt}^{b-vt} P(u)du = 0.05 \int_a^b P(x) dx } \]
Maple comands from book:
Maple comands from book:
\[ \small{ \begin{aligned} \frac{\partial C}{\partial t} &= - v \frac{\partial C}{\partial x} \\ C_j^{n+1} & = C_j^n - \frac{v \tau }{2h}\left(C_{j+1}^n - C_{j-1}^n \right) \end{aligned}} \]
\[ \small{ \begin{aligned} C_j^{n+1} & = C_j^n - \frac{v \tau }{2h}\left(C_{j+1}^n - C_{j-1}^n \right) \,\,\, \mathrm{(FTCS)}\\ C_j^{n+1} & = \frac{1}{2}\left( C_{j+1}^n + C_{j-1}^n \right) - \frac{v \tau }{2h}\left(C_{j+1}^n - C_{j-1}^n \right) \,\,\, \mathrm{(Lax)} \end{aligned}} \]
Boundary Value Problem:
\[ \small{ \begin{aligned} \frac{\partial C}{\partial t} &= - v \frac{\partial C}{\partial x} \\ C(a,t) & = \frac{g(t)}{F} \\ C(x,0) & = P(x) \end{aligned}} \]
Solution:
\[ \small{ C(x,t)=\left\{ \begin{array}{ll} \frac{1}{4}\left(x-t-2\right)^2, & \text{if } t< x \\ e^{-(4-(t-x)^2)}, & \text{if } t > x \end{array} \right.} \]