Ch12.4 Lake Pollution Revisited

Background

  • There are several processes by which pollution travels in lake, such as advection, dispersion, diffusion, and reaction.
  • In Chapter 2.5, we assumed the lake was well mixed and that pollution was transported by water flow.
  • This type of transport is advection, and is equivalent to convection of heat.

Overview

  • We will assume pollution levels are different throughout lake, and that advection is responsible for movement of pollution.
  • A PDE for pollution concentration will be derived, and solved analytically using the method of characteristics.
  • Numerical solutions can be obtained using Math 366 methods, and software packages such as Maple.

Humor



Imagine if Americans switched from pounds to kilograms overnight.

There would be mass confusion!

Advection-Dispersion-Reaction (ADR) Eqn

\[ \small{ \frac{\partial C}{\partial t} = - v \frac{\partial C}{\partial x} + D_x \frac{\partial^2 C}{\partial x^2} + D_y \frac{\partial^2 C}{\partial y^2} + D_z \frac{\partial^2 C}{\partial z^2} - \lambda RC } \]

  • Left side: rate of concentration change per unit volume.
  • Right side: advective flux in x direction, solute flux due to dispersion in \( x, y, z \) directions, and biotic & abiotic decay.
  • www.enviro.wiki/groundwaterflow

Advection-Dispersion-Reaction (ADR) Eqn

\[ \small{ \frac{\partial C}{\partial t} = - v \frac{\partial C}{\partial x} + D_x \frac{\partial^2 C}{\partial x^2} + D_y \frac{\partial^2 C}{\partial y^2} + D_z \frac{\partial^2 C}{\partial z^2} - \lambda RC } \]

Parameters

  • \( v \) = advective transport velocity in \( x \) direction \( (L/T) \)
  • \( D_x, D_y, D_z \) = hydrodynamic dispersion coefficients in \( x, y, z \) directions \( (L^2/T) \)
  • \( \lambda \) = effective first order decay rate due to combined biotic and abiotic processes \( (1/T) \)
  • \( R \) = equilibrium-based (reaction) reduction factor

ADR Equation

\[ \small{ \frac{\partial C}{\partial t} = - v \frac{\partial C}{\partial x} + D_x \frac{\partial^2 C}{\partial x^2} + D_y \frac{\partial^2 C}{\partial y^2} + D_z \frac{\partial^2 C}{\partial z^2} - \lambda RC } \]

ADR Solution Curves

\[ \small{ \frac{\partial C}{\partial t} = - v \frac{\partial C}{\partial x} + D_x \frac{\partial^2 C}{\partial x^2} + D_y \frac{\partial^2 C}{\partial y^2} + D_z \frac{\partial^2 C}{\partial z^2} - \lambda RC } \]

Ch12.4 Model: Assumptions

In many lakes there is a channel of flow from entrance to exit that is rectangular in shape, where advection is main way that pollution travels. Thus we start by assuming the following:

  • Pollution source will be from a feeder river at one end.
  • Flow of water into and out of lake are the same.
  • Lake is rectangular with constant volume \( V \).

Additional Assumptions

  • Pollution travels with flow of water (advection) only.
  • Unidirectional flow of water from entrance to exit of lake.
  • If \( x \) is in direction of water flow, and \( y \) and \( z \) are the other axes in 3D plane, then there is no change in pollution concentration in these other directions.
  • Pollution is not in uniform concentration throughout lake.

\[ \small{ \begin{aligned} \frac{\partial C}{\partial t} &= - v \frac{\partial C}{\partial x} + D_x \frac{\partial^2 C}{\partial x^2} + D_y \frac{\partial^2 C}{\partial y^2} + D_z \frac{\partial^2 C}{\partial z^2} - \lambda RC \\ \frac{\partial C}{\partial t} & = - v \frac{\partial C}{\partial x} \end{aligned} } \]

Variables

  • Let \( x \) be horizontal distance of pollution from entry point.
  • Let \( C \) denote concentration of pollution at \( x \).
  • The concentration \( C(x,t) \) of pollutant depends on both position \( x \) in lake and time \( t \).

Variables

  • Let \( J(x, t) \) = pollution mass flux per unit area \( A \) per unit time at position \( x \) and time \( t \).
  • Let \( F(x, t) \) = flow rate (\( V \)/time) across area \( A \).
    • \( F(a, t) \) = flow rate across area \( A \) at entrance
    • \( F(b, t) \) = flow rate across area \( A \) leaving lake.

Word Equation

Applied to total mass of pollutant in section of width \( \Delta x \),

\[ \small{ \begin{Bmatrix}\mathrm{rate \, of \, change\, of} \\ \mathrm{pollutant \, mass} \\ \mathrm{in \, section}\end{Bmatrix} = \begin{Bmatrix} \mathrm{rate \, of \, pollutant} \\ \mathrm{mass \, entering} \\ \mathrm{section \, at \,} x \end{Bmatrix} -\begin{Bmatrix} \mathrm{rate \, of \, pollutant} \\ \mathrm{mass \, leaving \, section } \\ \mathrm{at \, }x+\Delta x\end{Bmatrix} } \]

Formulate PDE

\[ \small{ \begin{Bmatrix}\mathrm{rate \, of \, change\, of} \\ \mathrm{pollutant \, mass} \\ \mathrm{in \, section}\end{Bmatrix} = \begin{Bmatrix} \mathrm{rate \, of \, pollutant} \\ \mathrm{mass \, entering} \\ \mathrm{section \, at \,} x \end{Bmatrix} -\begin{Bmatrix} \mathrm{rate \, of \, pollutant} \\ \mathrm{mass \, leaving \, section } \\ \mathrm{at \, }x+\Delta x\end{Bmatrix} } \]

\[ \small{ \begin{aligned} A \Delta x \frac{ \partial C }{ \partial t } &= J(x, t)A - J(x + \Delta x, t)A \\ \\ \lim_{\Delta x \rightarrow 0} \frac{ \partial C }{ \partial t } &= - \lim_{\Delta x \rightarrow 0} \frac{ J(x + \Delta x, t) - J(x, t) }{ \Delta x } \\ \\ \frac{ \partial C }{ \partial t } &= - \frac{ \partial J }{ \partial x } \end{aligned}} \]

Formulate PDE

From the previous slide,

\[ \small{ \frac{ \partial C }{ \partial t } = - \frac{ \partial J }{ \partial x } = -\frac{F}{A}\frac{\partial C}{\partial x}} \]

In above equation, we used \( J = (F/A)C \), where

\[ \small{ \left[J\right] = \frac{kg}{A \cdot sec} , \,\, \left[\frac{F}{A}C\right] = \left(\frac{\frac{V}{sec}}{A}\right) \frac{kg}{V} = \frac{kg}{A \cdot sec}} \]

Thus \[ \small{ \frac{\partial C}{\partial t} = - v \frac{\partial C}{\partial x}, \,\,\, v = \frac{F}{A},\,\,\, [v] = \left[\frac{\frac{V}{sec}}{A }\right] = \frac{L_x}{sec} } \]

PDE Boundary & Initial Conditions

Boundary condition at \( x=a \), where pollution enters lake:

\[ \small{ C(a,t) = \frac{g(t)}{F} } \]

Unit check:

\[ \small{ \left[\frac{g(t)}{F}\right] = \frac{\frac{kg}{sec}}{\frac{V}{sec}} = \frac{kg}{V} } \]

We also assume an initial pollution concentration each point \( x \):

\[ \small{ C(x,0) = P(x) } \]

PDE Boundary Value Problem

Our first order PDE boundary and initial value problem:

\[ \small{ \begin{aligned} \frac{\partial C}{\partial t} &= - v \frac{\partial C}{\partial x} \\ C(a,t) & = \frac{g(t)}{F} \\ C(x,0) & = P(x) \end{aligned}} \]

Figure: Blue curve = \( P(x) \), orange curve = \( g(t) \).

Analytical Solution: Characteristics

  • Method of Characteristics
  • Math 360, Ch12.4
    • Second order case
  • Characteristics are level curves of solution \( C(x,t) \).

\[ \small{ \begin{aligned} \frac{\partial C}{\partial t} &= - v \frac{\partial C}{\partial x} \\ C(a,t) & = \frac{g(t)}{F} \\ C(x,0) & = P(x) \end{aligned}} \]

Advection Coefficient & Characteristics

  • The coefficient \( v \) on advection term represents wave speed.

\[ \small{ \begin{aligned} \frac{\partial C}{\partial t} & = - v \frac{\partial C}{\partial x}\\ \frac{dx}{dt} & = v = F/A \end{aligned} } \]

  • For \( v \) constant, we have

\[ \small{x = vt + K } \]

  • Graph produces lines called characteristics.

Chain Rule & Level Curves

From previous slide,

\[ \small{ \frac{\partial C}{\partial t} + v \frac{\partial C}{\partial x}=0, \, \frac{dx}{dt} = v, \, x = vt + K } \]

Applying chain rule to \( C(x,t) \),

\[ \small{ \begin{aligned} \frac{dC}{dt} &= \frac{\partial C}{\partial x} \frac{dx}{dt} + \frac{\partial C}{\partial t} \frac{dt}{dt} \\ &= \frac{\partial C}{\partial x}v + \frac{\partial C}{\partial t} \\ & = 0 \end{aligned} } \]

\( C(x,t) \) constant on \( x = vt + K \).

Level Curves & Boundary Conditions

  • Pollution concentration is constant on characteristic lines

\[ \small{x = vt + K } \]

  • The value of \( C(x,t) \) on boundaries will therefore propagate unchanged along these lines.
  • Use this result to build analytical solution for \( C(x,t) \).

Characteristic Line: Key Formula

\( C(x,t) \) is constant on

\[ \small{x = vt + K, \,\, v = F/A } \]

  • When \( t = 0 \), \( x = a \).
  • It follows that

\[ \small{ K = a } \]

  • Solving \( \small{\,x = vt + a\,} \) for \( t \),

\[ \small{t = \frac{A}{F}(x-a) } \]

Initial Condition (t = 0)

Characteristics intersect \( x \)-axis at \( (K, 0) \) when

\[ \small{ t < \frac{A}{F}(x - a) } \]

\( C \) is constant on characteristic, so

\[ \small{ C(x,t) = C(x,0) = P(K) } \]

For \( \, \small{x = (F/A)t + K}\, \) in this case,

\[ \small{ C(x,t) = P\left(x - \frac{F}{A}t \right) } \]

Boundary Condition (x = a)

Lines cross \( t \)-axis at \( (a, K_1) \) when

\[ \small{ t > \frac{A}{F}(x - a) } \] Then \[ \small{ t = \frac{A}{F} (x - a) + K_1 } \]

Since \( \, \small{t = K_1\,} \) at \( x=a \),

\[ \small{ \begin{aligned} C(a,t) &= \frac{g(K_1)}{F} \\ \therefore C(x,t) & = \frac{g(K_1)}{F} \end{aligned}} \]

Boundary Condition (x = a)

Thus for \( (x,t) \) on this characteristic line,

\[ \small{ \begin{aligned} t &= \frac{A}{F} (x - a) + K_1 \\ C(x,t) & = \frac{g(K_1)}{F} = \frac{g \left(t - \frac{A}{F} (x - a) \right)}{F} \end{aligned}} \]

Analytical Solution

Concentration of pollutant for \( \, a \leq x \leq b, \, t \geq 0 \, \):

\[ \small{ C(x,t)=\left\{ \begin{array}{ll} P\left(x-\frac{F}{A}t\right), & \text{if } t<\frac{A}{F}(x-a) \\ g\left(t-\frac{A}{F}(x-a)\right), & \text{if } t>\frac{A}{F}(x-a) \end{array} \right. \\ } \]

Example 1

Suppose initial and boundary conditions are given by

\[ \small{ \begin{aligned} C(x,0) & = P(x) = \frac{1}{4}(x-2)^2, \,\, 0 \leq x \leq 4\\ C(0,t) &= g(t) = e^{-(4-t)^2}, \,\, t \geq 0 \end{aligned}} \]

Example 1

With \( v = 1 \), \( a = 0, b= 4 \), the solution

\[ \small{ C(x,t)=\left\{ \begin{array}{ll} P\left(x-vt\right), & \text{if } t<\frac{x-a}{v} \\ g\left(t-\frac{x-a}{v}\right), & \text{if } t>\frac{x-a}{v} \end{array} \right.} \]

becomes

\[ \small{ C(x,t)=\left\{ \begin{array}{ll} \frac{1}{4}\left(x-t-2\right)^2, & \text{if } t< x \\ e^{-(4-(t-x)^2)}, & \text{if } t > x \end{array} \right.} \]

Ex 1: Solution Animation in Desmos

\[ \small{ C(x,t)=\left\{ \begin{array}{ll} \frac{1}{4}\left(x-t-2\right)^2, & \text{if } t< x \\ e^{-(4-(t-x)^2)}, & \text{if } t > x \end{array} \right.} \]

Ex 1: Solution Animation in CalcPlot3D

\[ \small{ C(x,t)=\left\{ \begin{array}{ll} \frac{1}{4}\left(x-t-2\right)^2, & \text{if } t< x \\ e^{-(4-(t-x)^2)}, & \text{if } t > x \end{array} \right.} \]

Ex 1: Solution Animation in CalcPlot3D

\[ \small{ C(x,t)=\left\{ \begin{array}{ll} \frac{1}{4}\left(x-t-2\right)^2, & \text{if } t< x \\ e^{-(4-(t-x)^2)}, & \text{if } t > x \end{array} \right.} \]

Ex 1: Level Curves in CalcPlot3D

  • Concentration as level curves over characteristics.

\[ \small{ C(x,t)=\left\{ \begin{array}{ll} \frac{1}{4}\left(x-t-2\right)^2, & \text{if } t< x \\ e^{-(4-(t-x)^2)}, & \text{if } t > x \end{array} \right.} \]

Example 2: Lake Cleaning Time

Suppose only freshwater enters lake, with \( g(t) = 0 \).

\[ \small{ C(x,t)=\left\{ \begin{array}{ll} 0, & \text{if } t>\frac{x-a}{v} \\ P\left(x-vt\right), & \text{if } t<\frac{x-a}{v} \end{array} \right.} \]

For \( v=1 \), lake is clean after

\[ \small{ t = \frac{b - a}{v} \Leftrightarrow x = b } \]

Example 3: Pollution Reduction

  • How long will it take a lake to decrease to \( 5\% \) of its current level of pollutant, assuming \( \, g(t) = 0 \) and \( P(x) \neq 0 \)?

  • Lake has constant width and depth, so mass given by

\[ \small{ M=\iiint_E C(x, t) dV = A \int_a^b P(x-vt) dx } \]

  • Find \( t \) such that

\[ \small{ \begin{aligned} \int_a^b P(x-vt) dx &= 0.05 \int_a^b P(x) dx \\ \int_{a-vt}^{b-vt} P(u)du &= 0.05 \int_a^b P(x) dx \\ \end{aligned} } \]

Example 3: Pollution Reduction

  • How long will it take a lake to decrease to \( 5\% \) of its current level of pollutant, assuming \( \, g(t) = 0 \) and \( P(x) \neq 0 \)?
  • Find \( t \) such that

\[ \small{ \int_{a-vt}^{b-vt} P(u)du = 0.05 \int_a^b P(x) dx } \]

Example 4: Gaussian Profile

  • Left graph shows advection only case.
  • Right graph shows diffusion only case.
    • Coloring shows level curves

Ex 5: Numerical Solution Using Maple

Maple comands from book:

Numerical Solution Using Maple

Maple comands from book:

Finite Difference Method (FTCS)

  • Math 366 Methods II: Ch21.6 (\( u_t = u_{xx} \), diffusion only).
  • Grid with uniform spacing \( h \) along x-axis and \( \tau \) along t-axis.
  • Forward time, centered space (FTCS) method

\[ \small{ \begin{aligned} \frac{\partial C}{\partial t} &= - v \frac{\partial C}{\partial x} \\ C_j^{n+1} & = C_j^n - \frac{v \tau }{2h}\left(C_{j+1}^n - C_{j-1}^n \right) \end{aligned}} \]

Finite Difference Method (FTCS)

  • Math 366 Methods II: Ch21.6 (Crank-Nicholson method).
  • FTCS method is unstable; can use Lax method instead:

\[ \small{ \begin{aligned} C_j^{n+1} & = C_j^n - \frac{v \tau }{2h}\left(C_{j+1}^n - C_{j-1}^n \right) \,\,\, \mathrm{(FTCS)}\\ C_j^{n+1} & = \frac{1}{2}\left( C_{j+1}^n + C_{j-1}^n \right) - \frac{v \tau }{2h}\left(C_{j+1}^n - C_{j-1}^n \right) \,\,\, \mathrm{(Lax)} \end{aligned}} \]

Conclusion: Advection PDE Model

Boundary Value Problem:

\[ \small{ \begin{aligned} \frac{\partial C}{\partial t} &= - v \frac{\partial C}{\partial x} \\ C(a,t) & = \frac{g(t)}{F} \\ C(x,0) & = P(x) \end{aligned}} \]

Solution:

\[ \small{ C(x,t)=\left\{ \begin{array}{ll} \frac{1}{4}\left(x-t-2\right)^2, & \text{if } t< x \\ e^{-(4-(t-x)^2)}, & \text{if } t > x \end{array} \right.} \]

References for More Information