des.res3<-FrF2(nfactors=4,resolution=4,randomize=FALSE)
des.res3
## A B C D
## 1 -1 -1 -1 -1
## 2 1 -1 -1 1
## 3 -1 1 -1 1
## 4 1 1 -1 -1
## 5 -1 -1 1 1
## 6 1 -1 1 -1
## 7 -1 1 1 -1
## 8 1 1 1 1
## class=design, type= FrF2
response <- c(7.037,16.867,13.876,17.273,11.846,4.368,9.36,15.653)
des.resp1 <- add.response(des.res3,response)
aliasprint(des.resp1)
## $legend
## [1] A=A B=B C=C D=D
##
## $main
## character(0)
##
## $fi2
## [1] AB=CD AC=BD AD=BC
summary(des.resp1)
## Call:
## FrF2(nfactors = 4, resolution = 4, randomize = FALSE)
##
## Experimental design of type FrF2
## 8 runs
##
## Factor settings (scale ends):
## A B C D
## 1 -1 -1 -1 -1
## 2 1 1 1 1
##
## Responses:
## [1] response
##
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D
##
## $generators
## [1] D=ABC
##
##
## Alias structure:
## $fi2
## [1] AB=CD AC=BD AD=BC
##
##
## The design itself:
## A B C D response
## 1 -1 -1 -1 -1 7.037
## 2 1 -1 -1 1 16.867
## 3 -1 1 -1 1 13.876
## 4 1 1 -1 -1 17.273
## 5 -1 -1 1 1 11.846
## 6 1 -1 1 -1 4.368
## 7 -1 1 1 -1 9.360
## 8 1 1 1 1 15.653
## class=design, type= FrF2
DanielPlot(des.resp1)
des.res <- FrF2(nfactors = 5, resolution = 5 ,randomize = FALSE)
aliasprint(des.res)
## $legend
## [1] A=A B=B C=C D=D E=E
##
## [[2]]
## [1] no aliasing among main effects and 2fis
summary(des.res)
## Call:
## FrF2(nfactors = 5, resolution = 5, randomize = FALSE)
##
## Experimental design of type FrF2
## 16 runs
##
## Factor settings (scale ends):
## A B C D E
## 1 -1 -1 -1 -1 -1
## 2 1 1 1 1 1
##
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D E=E
##
## $generators
## [1] E=ABCD
##
##
## Alias structure:
## [[1]]
## [1] no aliasing among main effects and 2fis
##
##
## The design itself:
## A B C D E
## 1 -1 -1 -1 -1 1
## 2 1 -1 -1 -1 -1
## 3 -1 1 -1 -1 -1
## 4 1 1 -1 -1 1
## 5 -1 -1 1 -1 -1
## 6 1 -1 1 -1 1
## 7 -1 1 1 -1 1
## 8 1 1 1 -1 -1
## 9 -1 -1 -1 1 -1
## 10 1 -1 -1 1 1
## 11 -1 1 -1 1 1
## 12 1 1 -1 1 -1
## 13 -1 -1 1 1 1
## 14 1 -1 1 1 -1
## 15 -1 1 1 1 -1
## 16 1 1 1 1 1
## class=design, type= FrF2
AB <- c("+","-","-","+","+","-","-","+","+","-","-","+","+","-","-","+")
Block <- c(1,2,2,1,1,2,2,1,1,2,2,1,1,2,2,1)
Data <- data.frame(des.res,AB,Block)
Data
## A B C D E AB Block
## 1 -1 -1 -1 -1 1 + 1
## 2 1 -1 -1 -1 -1 - 2
## 3 -1 1 -1 -1 -1 - 2
## 4 1 1 -1 -1 1 + 1
## 5 -1 -1 1 -1 -1 + 1
## 6 1 -1 1 -1 1 - 2
## 7 -1 1 1 -1 1 - 2
## 8 1 1 1 -1 -1 + 1
## 9 -1 -1 -1 1 -1 + 1
## 10 1 -1 -1 1 1 - 2
## 11 -1 1 -1 1 1 - 2
## 12 1 1 -1 1 -1 + 1
## 13 -1 -1 1 1 1 + 1
## 14 1 -1 1 1 -1 - 2
## 15 -1 1 1 1 -1 - 2
## 16 1 1 1 1 1 + 1
design <- FrF2(nruns = 32,nfactors=7,blocks = 4,randomize=TRUE)
design
## run.no run.no.std.rp Blocks A B C D E F G
## 1 1 22.1.6 1 1 -1 1 -1 1 -1 1
## 2 2 29.1.8 1 1 1 1 -1 -1 1 -1
## 3 3 1.1.1 1 -1 -1 -1 -1 -1 -1 -1
## 4 4 20.1.5 1 1 -1 -1 1 1 1 -1
## 5 5 10.1.3 1 -1 1 -1 -1 1 1 1
## 6 6 7.1.2 1 -1 -1 1 1 -1 1 1
## 7 7 27.1.7 1 1 1 -1 1 -1 -1 1
## 8 8 16.1.4 1 -1 1 1 1 1 -1 -1
## run.no run.no.std.rp Blocks A B C D E F G
## 9 9 9.2.3 2 -1 1 -1 -1 -1 1 1
## 10 10 30.2.8 2 1 1 1 -1 1 1 -1
## 11 11 8.2.2 2 -1 -1 1 1 1 1 1
## 12 12 19.2.5 2 1 -1 -1 1 -1 1 -1
## 13 13 15.2.4 2 -1 1 1 1 -1 -1 -1
## 14 14 28.2.7 2 1 1 -1 1 1 -1 1
## 15 15 21.2.6 2 1 -1 1 -1 -1 -1 1
## 16 16 2.2.1 2 -1 -1 -1 -1 1 -1 -1
## run.no run.no.std.rp Blocks A B C D E F G
## 17 17 24.3.6 3 1 -1 1 1 1 -1 -1
## 18 18 18.3.5 3 1 -1 -1 -1 1 1 1
## 19 19 5.3.2 3 -1 -1 1 -1 -1 1 -1
## 20 20 31.3.8 3 1 1 1 1 -1 1 1
## 21 21 3.3.1 3 -1 -1 -1 1 -1 -1 1
## 22 22 12.3.3 3 -1 1 -1 1 1 1 -1
## 23 23 25.3.7 3 1 1 -1 -1 -1 -1 -1
## 24 24 14.3.4 3 -1 1 1 -1 1 -1 1
## run.no run.no.std.rp Blocks A B C D E F G
## 25 25 32.4.8 4 1 1 1 1 1 1 1
## 26 26 23.4.6 4 1 -1 1 1 -1 -1 -1
## 27 27 26.4.7 4 1 1 -1 -1 1 -1 -1
## 28 28 13.4.4 4 -1 1 1 -1 -1 -1 1
## 29 29 6.4.2 4 -1 -1 1 -1 1 1 -1
## 30 30 11.4.3 4 -1 1 -1 1 -1 1 -1
## 31 31 4.4.1 4 -1 -1 -1 1 1 -1 1
## 32 32 17.4.5 4 1 -1 -1 -1 -1 1 1
## class=design, type= FrF2.blocked
## NOTE: columns run.no and run.no.std.rp are annotation,
## not part of the data frame
summary(design)
## Call:
## FrF2(nruns = 32, nfactors = 7, blocks = 4, randomize = TRUE)
##
## Experimental design of type FrF2.blocked
## 32 runs
## blocked design with 4 blocks of size 8
##
## Factor settings (scale ends):
## A B C D E F G
## 1 -1 -1 -1 -1 -1 -1 -1
## 2 1 1 1 1 1 1 1
##
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D E=E F=F G=G
##
## $`generators for design itself`
## [1] F=ABC G=ABD
##
## $`block generators`
## [1] ACD ABE
##
##
## Alias structure:
## $fi2
## [1] AB=CF=DG AC=BF AD=BG AF=BC AG=BD CD=FG CG=DF
##
## Aliased with block main effects:
## [1] none
##
## The design itself:
## run.no run.no.std.rp Blocks A B C D E F G
## 1 1 22.1.6 1 1 -1 1 -1 1 -1 1
## 2 2 29.1.8 1 1 1 1 -1 -1 1 -1
## 3 3 1.1.1 1 -1 -1 -1 -1 -1 -1 -1
## 4 4 20.1.5 1 1 -1 -1 1 1 1 -1
## 5 5 10.1.3 1 -1 1 -1 -1 1 1 1
## 6 6 7.1.2 1 -1 -1 1 1 -1 1 1
## 7 7 27.1.7 1 1 1 -1 1 -1 -1 1
## 8 8 16.1.4 1 -1 1 1 1 1 -1 -1
## run.no run.no.std.rp Blocks A B C D E F G
## 9 9 9.2.3 2 -1 1 -1 -1 -1 1 1
## 10 10 30.2.8 2 1 1 1 -1 1 1 -1
## 11 11 8.2.2 2 -1 -1 1 1 1 1 1
## 12 12 19.2.5 2 1 -1 -1 1 -1 1 -1
## 13 13 15.2.4 2 -1 1 1 1 -1 -1 -1
## 14 14 28.2.7 2 1 1 -1 1 1 -1 1
## 15 15 21.2.6 2 1 -1 1 -1 -1 -1 1
## 16 16 2.2.1 2 -1 -1 -1 -1 1 -1 -1
## run.no run.no.std.rp Blocks A B C D E F G
## 17 17 24.3.6 3 1 -1 1 1 1 -1 -1
## 18 18 18.3.5 3 1 -1 -1 -1 1 1 1
## 19 19 5.3.2 3 -1 -1 1 -1 -1 1 -1
## 20 20 31.3.8 3 1 1 1 1 -1 1 1
## 21 21 3.3.1 3 -1 -1 -1 1 -1 -1 1
## 22 22 12.3.3 3 -1 1 -1 1 1 1 -1
## 23 23 25.3.7 3 1 1 -1 -1 -1 -1 -1
## 24 24 14.3.4 3 -1 1 1 -1 1 -1 1
## run.no run.no.std.rp Blocks A B C D E F G
## 25 25 32.4.8 4 1 1 1 1 1 1 1
## 26 26 23.4.6 4 1 -1 1 1 -1 -1 -1
## 27 27 26.4.7 4 1 1 -1 -1 1 -1 -1
## 28 28 13.4.4 4 -1 1 1 -1 -1 -1 1
## 29 29 6.4.2 4 -1 -1 1 -1 1 1 -1
## 30 30 11.4.3 4 -1 1 -1 1 -1 1 -1
## 31 31 4.4.1 4 -1 -1 -1 1 1 -1 1
## 32 32 17.4.5 4 1 -1 -1 -1 -1 1 1
## class=design, type= FrF2.blocked
## NOTE: columns run.no and run.no.std.rp are annotation,
## not part of the data frame
Ltemp <- c(rep(c("-1","1"),8))
Ltime <- c(rep(c("-1","-1","1","1"),4))
LPres <- c(rep(c("-1","-1","-1","-1","1","1","1","1"),2))
Ftemp <- c(rep(c("-1","-1","-1","-1","-1","-1","-1","-1","1","1","1","1","1","1","1","1"),1))
Fctime <- c(rep(c("-1","1","1","-1","1","-1","-1","1"),2))
Fdpoint <- c(rep(c("-1","1","-1","1","1","-1","1","-1"),2))
resp <- c(0.0167,0.0062,0.0041,0.0073,0.0047,0.0219,0.0121,0.0255,0.0032,0.0078,0.0043,0.0186,0.011,0.0065,0.0155,0.0093,0.0128,0.0066,0.0043,0.0081,0.0047,0.0258,0.009,0.025,0.0023,0.0158,0.0027,0.0137,0.0086,0.0109,0.0158,0.0124,0.0149,0.0044,0.0042,0.0039,0.004,0.0147,0.0092,0.0226,0.0077,0.006,0.0028,0.0158,0.0101,0.0126,0.0145,0.011,0.0185,0.002,0.005,0.003,0.0089,0.0296,0.0086,0.0169,0.0069,0.0045,0.0028,0.0159,0.0158,0.0071,0.0145,0.0133)
total <- c(629,192,176,223,223,920,389,900,201,341,126,640,455,371,603,460)
Mean <- c(157.25,48,44,55.75,55.75,230,97.25,225,50.25,85.25,31.5,160,113.75,92.75,150.75,115)
Std <- c(24.418,20.976,4.083,25.025,22.41,63.639,16.029,39.42,26.725,50.341,7.681,20.083,31.12,29.51,6.75,17.45
)
dat <- cbind(Ltemp,Ltime,LPres,Ftemp,Fctime,Fdpoint,resp,total,Mean,Std)
dat <- as.data.frame(dat)
dat
## Ltemp Ltime LPres Ftemp Fctime Fdpoint resp total Mean Std
## 1 -1 -1 -1 -1 -1 -1 0.0167 629 157.25 24.418
## 2 1 -1 -1 -1 1 1 0.0062 192 48 20.976
## 3 -1 1 -1 -1 1 -1 0.0041 176 44 4.083
## 4 1 1 -1 -1 -1 1 0.0073 223 55.75 25.025
## 5 -1 -1 1 -1 1 1 0.0047 223 55.75 22.41
## 6 1 -1 1 -1 -1 -1 0.0219 920 230 63.639
## 7 -1 1 1 -1 -1 1 0.0121 389 97.25 16.029
## 8 1 1 1 -1 1 -1 0.0255 900 225 39.42
## 9 -1 -1 -1 1 -1 -1 0.0032 201 50.25 26.725
## 10 1 -1 -1 1 1 1 0.0078 341 85.25 50.341
## 11 -1 1 -1 1 1 -1 0.0043 126 31.5 7.681
## 12 1 1 -1 1 -1 1 0.0186 640 160 20.083
## 13 -1 -1 1 1 1 1 0.011 455 113.75 31.12
## 14 1 -1 1 1 -1 -1 0.0065 371 92.75 29.51
## 15 -1 1 1 1 -1 1 0.0155 603 150.75 6.75
## 16 1 1 1 1 1 -1 0.0093 460 115 17.45
## 17 -1 -1 -1 -1 -1 -1 0.0128 629 157.25 24.418
## 18 1 -1 -1 -1 1 1 0.0066 192 48 20.976
## 19 -1 1 -1 -1 1 -1 0.0043 176 44 4.083
## 20 1 1 -1 -1 -1 1 0.0081 223 55.75 25.025
## 21 -1 -1 1 -1 1 1 0.0047 223 55.75 22.41
## 22 1 -1 1 -1 -1 -1 0.0258 920 230 63.639
## 23 -1 1 1 -1 -1 1 0.009 389 97.25 16.029
## 24 1 1 1 -1 1 -1 0.025 900 225 39.42
## 25 -1 -1 -1 1 -1 -1 0.0023 201 50.25 26.725
## 26 1 -1 -1 1 1 1 0.0158 341 85.25 50.341
## 27 -1 1 -1 1 1 -1 0.0027 126 31.5 7.681
## 28 1 1 -1 1 -1 1 0.0137 640 160 20.083
## 29 -1 -1 1 1 1 1 0.0086 455 113.75 31.12
## 30 1 -1 1 1 -1 -1 0.0109 371 92.75 29.51
## 31 -1 1 1 1 -1 1 0.0158 603 150.75 6.75
## 32 1 1 1 1 1 -1 0.0124 460 115 17.45
## 33 -1 -1 -1 -1 -1 -1 0.0149 629 157.25 24.418
## 34 1 -1 -1 -1 1 1 0.0044 192 48 20.976
## 35 -1 1 -1 -1 1 -1 0.0042 176 44 4.083
## 36 1 1 -1 -1 -1 1 0.0039 223 55.75 25.025
## 37 -1 -1 1 -1 1 1 0.004 223 55.75 22.41
## 38 1 -1 1 -1 -1 -1 0.0147 920 230 63.639
## 39 -1 1 1 -1 -1 1 0.0092 389 97.25 16.029
## 40 1 1 1 -1 1 -1 0.0226 900 225 39.42
## 41 -1 -1 -1 1 -1 -1 0.0077 201 50.25 26.725
## 42 1 -1 -1 1 1 1 0.006 341 85.25 50.341
## 43 -1 1 -1 1 1 -1 0.0028 126 31.5 7.681
## 44 1 1 -1 1 -1 1 0.0158 640 160 20.083
## 45 -1 -1 1 1 1 1 0.0101 455 113.75 31.12
## 46 1 -1 1 1 -1 -1 0.0126 371 92.75 29.51
## 47 -1 1 1 1 -1 1 0.0145 603 150.75 6.75
## 48 1 1 1 1 1 -1 0.011 460 115 17.45
## 49 -1 -1 -1 -1 -1 -1 0.0185 629 157.25 24.418
## 50 1 -1 -1 -1 1 1 0.002 192 48 20.976
## 51 -1 1 -1 -1 1 -1 0.005 176 44 4.083
## 52 1 1 -1 -1 -1 1 0.003 223 55.75 25.025
## 53 -1 -1 1 -1 1 1 0.0089 223 55.75 22.41
## 54 1 -1 1 -1 -1 -1 0.0296 920 230 63.639
## 55 -1 1 1 -1 -1 1 0.0086 389 97.25 16.029
## 56 1 1 1 -1 1 -1 0.0169 900 225 39.42
## 57 -1 -1 -1 1 -1 -1 0.0069 201 50.25 26.725
## 58 1 -1 -1 1 1 1 0.0045 341 85.25 50.341
## 59 -1 1 -1 1 1 -1 0.0028 126 31.5 7.681
## 60 1 1 -1 1 -1 1 0.0159 640 160 20.083
## 61 -1 -1 1 1 1 1 0.0158 455 113.75 31.12
## 62 1 -1 1 1 -1 -1 0.0071 371 92.75 29.51
## 63 -1 1 1 1 -1 1 0.0145 603 150.75 6.75
## 64 1 1 1 1 1 -1 0.0133 460 115 17.45
des.res <- FrF2(nfactors = 6,resolution = 4 , randomize = TRUE)
aliasprint(des.res)
## $legend
## [1] A=A B=B C=C D=D E=E F=F
##
## $main
## character(0)
##
## $fi2
## [1] AB=CE=DF AC=BE AD=BF AE=BC AF=BD CD=EF CF=DE
Ltemp <- c(rep(c(-1,1),8))
Ltime <- c(rep(c(-1,-1,1,1),4))
LPres <- c(rep(c(-1,-1,-1,-1,1,1,1,1),2))
Ftemp <- c(rep(c(-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1),1))
Fctime <- c(rep(c(-1,1,1,-1,1,-1,-1,1),2))
Fdpoint <- c(rep(c(-1,1,-1,1,1,-1,1,-1),2))
resp <- c(0.0167,0.0062,0.0041,0.0073,0.0047,0.0219,0.0121,0.0255,0.0032,0.0078,0.0043,0.0186,0.011,0.0065,0.0155,0.0093,0.0128,0.0066,0.0043,0.0081,0.0047,0.0258,0.009,0.025,0.0023,0.0158,0.0027,0.0137,0.0086,0.0109,0.0158,0.0124,0.0149,0.0044,0.0042,0.0039,0.004,0.0147,0.0092,0.0226,0.0077,0.006,0.0028,0.0158,0.0101,0.0126,0.0145,0.011,0.0185,0.002,0.005,0.003,0.0089,0.0296,0.0086,0.0169,0.0069,0.0045,0.0028,0.0159,0.0158,0.0071,0.0145,0.0133)
total <- c(629,192,176,223,223,920,389,900,201,341,126,640,455,371,603,460)
Mean <- c(157.25,48,44,55.75,55.75,230,97.25,225,50.25,85.25,31.5,160,113.75,92.75,150.75,115)
Std <- c(24.418,20.976,4.083,25.025,22.41,63.639,16.029,39.42,26.725,50.341,7.681,20.083,31.12,29.51,6.75,17.45
)
dat <- cbind(Ltemp,Ltime,LPres,Ftemp,Fctime,Fdpoint,resp,total,Mean,Std)
dat <- as.data.frame(dat)
dat
## Ltemp Ltime LPres Ftemp Fctime Fdpoint resp total Mean Std
## 1 -1 -1 -1 -1 -1 -1 0.0167 629 157.25 24.418
## 2 1 -1 -1 -1 1 1 0.0062 192 48.00 20.976
## 3 -1 1 -1 -1 1 -1 0.0041 176 44.00 4.083
## 4 1 1 -1 -1 -1 1 0.0073 223 55.75 25.025
## 5 -1 -1 1 -1 1 1 0.0047 223 55.75 22.410
## 6 1 -1 1 -1 -1 -1 0.0219 920 230.00 63.639
## 7 -1 1 1 -1 -1 1 0.0121 389 97.25 16.029
## 8 1 1 1 -1 1 -1 0.0255 900 225.00 39.420
## 9 -1 -1 -1 1 -1 -1 0.0032 201 50.25 26.725
## 10 1 -1 -1 1 1 1 0.0078 341 85.25 50.341
## 11 -1 1 -1 1 1 -1 0.0043 126 31.50 7.681
## 12 1 1 -1 1 -1 1 0.0186 640 160.00 20.083
## 13 -1 -1 1 1 1 1 0.0110 455 113.75 31.120
## 14 1 -1 1 1 -1 -1 0.0065 371 92.75 29.510
## 15 -1 1 1 1 -1 1 0.0155 603 150.75 6.750
## 16 1 1 1 1 1 -1 0.0093 460 115.00 17.450
## 17 -1 -1 -1 -1 -1 -1 0.0128 629 157.25 24.418
## 18 1 -1 -1 -1 1 1 0.0066 192 48.00 20.976
## 19 -1 1 -1 -1 1 -1 0.0043 176 44.00 4.083
## 20 1 1 -1 -1 -1 1 0.0081 223 55.75 25.025
## 21 -1 -1 1 -1 1 1 0.0047 223 55.75 22.410
## 22 1 -1 1 -1 -1 -1 0.0258 920 230.00 63.639
## 23 -1 1 1 -1 -1 1 0.0090 389 97.25 16.029
## 24 1 1 1 -1 1 -1 0.0250 900 225.00 39.420
## 25 -1 -1 -1 1 -1 -1 0.0023 201 50.25 26.725
## 26 1 -1 -1 1 1 1 0.0158 341 85.25 50.341
## 27 -1 1 -1 1 1 -1 0.0027 126 31.50 7.681
## 28 1 1 -1 1 -1 1 0.0137 640 160.00 20.083
## 29 -1 -1 1 1 1 1 0.0086 455 113.75 31.120
## 30 1 -1 1 1 -1 -1 0.0109 371 92.75 29.510
## 31 -1 1 1 1 -1 1 0.0158 603 150.75 6.750
## 32 1 1 1 1 1 -1 0.0124 460 115.00 17.450
## 33 -1 -1 -1 -1 -1 -1 0.0149 629 157.25 24.418
## 34 1 -1 -1 -1 1 1 0.0044 192 48.00 20.976
## 35 -1 1 -1 -1 1 -1 0.0042 176 44.00 4.083
## 36 1 1 -1 -1 -1 1 0.0039 223 55.75 25.025
## 37 -1 -1 1 -1 1 1 0.0040 223 55.75 22.410
## 38 1 -1 1 -1 -1 -1 0.0147 920 230.00 63.639
## 39 -1 1 1 -1 -1 1 0.0092 389 97.25 16.029
## 40 1 1 1 -1 1 -1 0.0226 900 225.00 39.420
## 41 -1 -1 -1 1 -1 -1 0.0077 201 50.25 26.725
## 42 1 -1 -1 1 1 1 0.0060 341 85.25 50.341
## 43 -1 1 -1 1 1 -1 0.0028 126 31.50 7.681
## 44 1 1 -1 1 -1 1 0.0158 640 160.00 20.083
## 45 -1 -1 1 1 1 1 0.0101 455 113.75 31.120
## 46 1 -1 1 1 -1 -1 0.0126 371 92.75 29.510
## 47 -1 1 1 1 -1 1 0.0145 603 150.75 6.750
## 48 1 1 1 1 1 -1 0.0110 460 115.00 17.450
## 49 -1 -1 -1 -1 -1 -1 0.0185 629 157.25 24.418
## 50 1 -1 -1 -1 1 1 0.0020 192 48.00 20.976
## 51 -1 1 -1 -1 1 -1 0.0050 176 44.00 4.083
## 52 1 1 -1 -1 -1 1 0.0030 223 55.75 25.025
## 53 -1 -1 1 -1 1 1 0.0089 223 55.75 22.410
## 54 1 -1 1 -1 -1 -1 0.0296 920 230.00 63.639
## 55 -1 1 1 -1 -1 1 0.0086 389 97.25 16.029
## 56 1 1 1 -1 1 -1 0.0169 900 225.00 39.420
## 57 -1 -1 -1 1 -1 -1 0.0069 201 50.25 26.725
## 58 1 -1 -1 1 1 1 0.0045 341 85.25 50.341
## 59 -1 1 -1 1 1 -1 0.0028 126 31.50 7.681
## 60 1 1 -1 1 -1 1 0.0159 640 160.00 20.083
## 61 -1 -1 1 1 1 1 0.0158 455 113.75 31.120
## 62 1 -1 1 1 -1 -1 0.0071 371 92.75 29.510
## 63 -1 1 1 1 -1 1 0.0145 603 150.75 6.750
## 64 1 1 1 1 1 -1 0.0133 460 115.00 17.450
dat$Ltemp <- as.fixed(dat$Ltemp)
dat$Ltime <- as.fixed(dat$Ltime)
dat$LPres <- as.fixed(dat$LPres)
dat$Ftemp <- as.fixed(dat$Ftemp)
dat$Fdpoint <- as.fixed(dat$Fdpoint)
dat$Fctime <- as.fixed(dat$Fctime)
model <- aov(resp~Ltemp*Ltime*LPres*Ftemp*Fctime*Fdpoint,data = dat)
summary(model)
## Df Sum Sq Mean Sq F value Pr(>F)
## Ltemp 1 0.0002422 0.0002422 27.793 3.17e-06 ***
## Ltime 1 0.0000053 0.0000053 0.614 0.43725
## LPres 1 0.0005023 0.0005023 57.644 9.14e-10 ***
## Ftemp 1 0.0000323 0.0000323 3.712 0.05995 .
## Fctime 1 0.0001901 0.0001901 21.815 2.45e-05 ***
## Fdpoint 1 0.0000803 0.0000803 9.218 0.00387 **
## Ltemp:Ltime 1 0.0000587 0.0000587 6.738 0.01249 *
## Ltime:LPres 1 0.0000527 0.0000527 6.053 0.01754 *
## Ltemp:Ftemp 1 0.0000239 0.0000239 2.741 0.10431
## Ltime:Ftemp 1 0.0000849 0.0000849 9.739 0.00305 **
## LPres:Ftemp 1 0.0000622 0.0000622 7.139 0.01027 *
## Ftemp:Fctime 1 0.0000088 0.0000088 1.007 0.32062
## Ftemp:Fdpoint 1 0.0009602 0.0009602 110.192 5.05e-14 ***
## Ltemp:Ltime:Ftemp 1 0.0000000 0.0000000 0.005 0.94291
## Ltime:LPres:Ftemp 1 0.0000481 0.0000481 5.523 0.02293 *
## Residuals 48 0.0004183 0.0000087
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
stdcamber <- c(24.418,20.976,4.083,25.025,22.41,63.639,16.029,39.42,26.725,50.341,7.681,20.083,31.12,29.51,6.75,17.45)
var <- stdcamber^2
A <- c(rep(c("-1","1"),8))
B <- c(rep(c("-1","-1","1","1"),4))
C <- c(rep(c("-1","-1","-1","-1","1","1","1","1"),2))
D <- c(rep(c("-1","-1","-1","-1","-1","-1","-1","-1","1","1","1","1","1","1","1","1"),1))
E <- c(rep(c("-1","1","1","-1","1","-1","-1","1"),2))
F<- c(rep(c("-1","1","-1","1","1","-1","1","-1"),2))
data <- data.frame(A,B,C,D,E,F,var)
model <- lm(stdcamber~A*B*C*D*E*F,data = data)
DanielPlot(model)
## from above daniel plot it is clear that it is Ltemp (A) and Ltime(B) which is significantly affecting standard deviation
model <- aov(stdcamber~A+B,data = data)
summary(model)
## Df Sum Sq Mean Sq F value Pr(>F)
## A 1 1012 1012 8.505 0.01202 *
## B 1 1099 1099 9.241 0.00948 **
## Residuals 13 1546 119
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Ltemp <- c(rep(c("-1","1"),8))
Ltime <- c(rep(c("-1","-1","1","1"),4))
LPres <- c(rep(c("-1","-1","-1","-1","1","1","1","1"),2))
Ftemp <- c(rep(c("-1","-1","-1","-1","-1","-1","-1","-1","1","1","1","1","1","1","1","1"),1))
Fctime <- c(rep(c("-1","1","1","-1","1","-1","-1","1"),2))
Fdpoint <- c(rep(c("-1","1","-1","1","1","-1","1","-1"),2))
resp <- c(0.0167,0.0062,0.0041,0.0073,0.0047,0.0219,0.0121,0.0255,0.0032,0.0078,0.0043,0.0186,0.011,0.0065,0.0155,0.0093,0.0128,0.0066,0.0043,0.0081,0.0047,0.0258,0.009,0.025,0.0023,0.0158,0.0027,0.0137,0.0086,0.0109,0.0158,0.0124,0.0149,0.0044,0.0042,0.0039,0.004,0.0147,0.0092,0.0226,0.0077,0.006,0.0028,0.0158,0.0101,0.0126,0.0145,0.011,0.0185,0.002,0.005,0.003,0.0089,0.0296,0.0086,0.0169,0.0069,0.0045,0.0028,0.0159,0.0158,0.0071,0.0145,0.0133)
total <- c(629,192,176,223,223,920,389,900,201,341,126,640,455,371,603,460)
Mean <- c(157.25,48,44,55.75,55.75,230,97.25,225,50.25,85.25,31.5,160,113.75,92.75,150.75,115)
Std <- c(24.418,20.976,4.083,25.025,22.41,63.639,16.029,39.42,26.725,50.341,7.681,20.083,31.12,29.51,6.75,17.45
)
dat <- cbind(Ltemp,Ltime,LPres,Ftemp,Fctime,Fdpoint,resp,total,Mean,Std)
dat <- as.data.frame(dat)
model <- lm(dat$resp~dat$Ltemp*dat$Ltime*dat$LPres*dat$Ftemp*dat$Fctime*dat$Fdpoint)
coef(model)
## (Intercept)
## 0.01572500
## dat$Ltemp1
## 0.00325000
## dat$Ltime1
## -0.00713750
## dat$LPres1
## 0.00402500
## dat$Ftemp1
## -0.01070000
## dat$Fctime1
## -0.00418750
## dat$Fdpoint1
## -0.00998750
## dat$Ltemp1:dat$Ltime1
## 0.00372500
## dat$Ltemp1:dat$LPres1
## NA
## dat$Ltime1:dat$LPres1
## 0.00710000
## dat$Ltemp1:dat$Ftemp1
## -0.00255000
## dat$Ltime1:dat$Ftemp1
## 0.00796875
## dat$LPres1:dat$Ftemp1
## -0.00047500
## dat$Ltemp1:dat$Fctime1
## NA
## dat$Ltime1:dat$Fctime1
## NA
## dat$LPres1:dat$Fctime1
## NA
## dat$Ftemp1:dat$Fctime1
## 0.00148125
## dat$Ltemp1:dat$Fdpoint1
## NA
## dat$Ltime1:dat$Fdpoint1
## NA
## dat$LPres1:dat$Fdpoint1
## NA
## dat$Ftemp1:dat$Fdpoint1
## 0.01549375
## dat$Fctime1:dat$Fdpoint1
## NA
## dat$Ltemp1:dat$Ltime1:dat$LPres1
## NA
## dat$Ltemp1:dat$Ltime1:dat$Ftemp1
## 0.00021250
## dat$Ltemp1:dat$LPres1:dat$Ftemp1
## NA
## dat$Ltime1:dat$LPres1:dat$Ftemp1
## -0.00693750
## dat$Ltemp1:dat$Ltime1:dat$Fctime1
## NA
## dat$Ltemp1:dat$LPres1:dat$Fctime1
## NA
## dat$Ltime1:dat$LPres1:dat$Fctime1
## NA
## dat$Ltemp1:dat$Ftemp1:dat$Fctime1
## NA
## dat$Ltime1:dat$Ftemp1:dat$Fctime1
## NA
## dat$LPres1:dat$Ftemp1:dat$Fctime1
## NA
## dat$Ltemp1:dat$Ltime1:dat$Fdpoint1
## NA
## dat$Ltemp1:dat$LPres1:dat$Fdpoint1
## NA
## dat$Ltime1:dat$LPres1:dat$Fdpoint1
## NA
## dat$Ltemp1:dat$Ftemp1:dat$Fdpoint1
## NA
## dat$Ltime1:dat$Ftemp1:dat$Fdpoint1
## NA
## dat$LPres1:dat$Ftemp1:dat$Fdpoint1
## NA
## dat$Ltemp1:dat$Fctime1:dat$Fdpoint1
## NA
## dat$Ltime1:dat$Fctime1:dat$Fdpoint1
## NA
## dat$LPres1:dat$Fctime1:dat$Fdpoint1
## NA
## dat$Ftemp1:dat$Fctime1:dat$Fdpoint1
## NA
## dat$Ltemp1:dat$Ltime1:dat$LPres1:dat$Ftemp1
## NA
## dat$Ltemp1:dat$Ltime1:dat$LPres1:dat$Fctime1
## NA
## dat$Ltemp1:dat$Ltime1:dat$Ftemp1:dat$Fctime1
## NA
## dat$Ltemp1:dat$LPres1:dat$Ftemp1:dat$Fctime1
## NA
## dat$Ltime1:dat$LPres1:dat$Ftemp1:dat$Fctime1
## NA
## dat$Ltemp1:dat$Ltime1:dat$LPres1:dat$Fdpoint1
## NA
## dat$Ltemp1:dat$Ltime1:dat$Ftemp1:dat$Fdpoint1
## NA
## dat$Ltemp1:dat$LPres1:dat$Ftemp1:dat$Fdpoint1
## NA
## dat$Ltime1:dat$LPres1:dat$Ftemp1:dat$Fdpoint1
## NA
## dat$Ltemp1:dat$Ltime1:dat$Fctime1:dat$Fdpoint1
## NA
## dat$Ltemp1:dat$LPres1:dat$Fctime1:dat$Fdpoint1
## NA
## dat$Ltime1:dat$LPres1:dat$Fctime1:dat$Fdpoint1
## NA
## dat$Ltemp1:dat$Ftemp1:dat$Fctime1:dat$Fdpoint1
## NA
## dat$Ltime1:dat$Ftemp1:dat$Fctime1:dat$Fdpoint1
## NA
## dat$LPres1:dat$Ftemp1:dat$Fctime1:dat$Fdpoint1
## NA
## dat$Ltemp1:dat$Ltime1:dat$LPres1:dat$Ftemp1:dat$Fctime1
## NA
## dat$Ltemp1:dat$Ltime1:dat$LPres1:dat$Ftemp1:dat$Fdpoint1
## NA
## dat$Ltemp1:dat$Ltime1:dat$LPres1:dat$Fctime1:dat$Fdpoint1
## NA
## dat$Ltemp1:dat$Ltime1:dat$Ftemp1:dat$Fctime1:dat$Fdpoint1
## NA
## dat$Ltemp1:dat$LPres1:dat$Ftemp1:dat$Fctime1:dat$Fdpoint1
## NA
## dat$Ltime1:dat$LPres1:dat$Ftemp1:dat$Fctime1:dat$Fdpoint1
## NA
## dat$Ltemp1:dat$Ltime1:dat$LPres1:dat$Ftemp1:dat$Fctime1:dat$Fdpoint1
## NA
summary(model)
##
## Call:
## lm.default(formula = dat$resp ~ dat$Ltemp * dat$Ltime * dat$LPres *
## dat$Ftemp * dat$Fctime * dat$Fdpoint)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.008300 -0.001350 -0.000350 0.001744 0.007275
##
## Coefficients: (48 not defined because of singularities)
## Estimate
## (Intercept) 0.0157250
## dat$Ltemp1 0.0032500
## dat$Ltime1 -0.0071375
## dat$LPres1 0.0040250
## dat$Ftemp1 -0.0107000
## dat$Fctime1 -0.0041875
## dat$Fdpoint1 -0.0099875
## dat$Ltemp1:dat$Ltime1 0.0037250
## dat$Ltemp1:dat$LPres1 NA
## dat$Ltime1:dat$LPres1 0.0071000
## dat$Ltemp1:dat$Ftemp1 -0.0025500
## dat$Ltime1:dat$Ftemp1 0.0079688
## dat$LPres1:dat$Ftemp1 -0.0004750
## dat$Ltemp1:dat$Fctime1 NA
## dat$Ltime1:dat$Fctime1 NA
## dat$LPres1:dat$Fctime1 NA
## dat$Ftemp1:dat$Fctime1 0.0014813
## dat$Ltemp1:dat$Fdpoint1 NA
## dat$Ltime1:dat$Fdpoint1 NA
## dat$LPres1:dat$Fdpoint1 NA
## dat$Ftemp1:dat$Fdpoint1 0.0154937
## dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$Ltime1:dat$LPres1 NA
## dat$Ltemp1:dat$Ltime1:dat$Ftemp1 0.0002125
## dat$Ltemp1:dat$LPres1:dat$Ftemp1 NA
## dat$Ltime1:dat$LPres1:dat$Ftemp1 -0.0069375
## dat$Ltemp1:dat$Ltime1:dat$Fctime1 NA
## dat$Ltemp1:dat$LPres1:dat$Fctime1 NA
## dat$Ltime1:dat$LPres1:dat$Fctime1 NA
## dat$Ltemp1:dat$Ftemp1:dat$Fctime1 NA
## dat$Ltime1:dat$Ftemp1:dat$Fctime1 NA
## dat$LPres1:dat$Ftemp1:dat$Fctime1 NA
## dat$Ltemp1:dat$Ltime1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$LPres1:dat$Fdpoint1 NA
## dat$Ltime1:dat$LPres1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$Ftemp1:dat$Fdpoint1 NA
## dat$Ltime1:dat$Ftemp1:dat$Fdpoint1 NA
## dat$LPres1:dat$Ftemp1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltime1:dat$Fctime1:dat$Fdpoint1 NA
## dat$LPres1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ftemp1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$Ltime1:dat$LPres1:dat$Ftemp1 NA
## dat$Ltemp1:dat$Ltime1:dat$LPres1:dat$Fctime1 NA
## dat$Ltemp1:dat$Ltime1:dat$Ftemp1:dat$Fctime1 NA
## dat$Ltemp1:dat$LPres1:dat$Ftemp1:dat$Fctime1 NA
## dat$Ltime1:dat$LPres1:dat$Ftemp1:dat$Fctime1 NA
## dat$Ltemp1:dat$Ltime1:dat$LPres1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$Ltime1:dat$Ftemp1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$LPres1:dat$Ftemp1:dat$Fdpoint1 NA
## dat$Ltime1:dat$LPres1:dat$Ftemp1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$Ltime1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$LPres1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltime1:dat$LPres1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$Ftemp1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltime1:dat$Ftemp1:dat$Fctime1:dat$Fdpoint1 NA
## dat$LPres1:dat$Ftemp1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$Ltime1:dat$LPres1:dat$Ftemp1:dat$Fctime1 NA
## dat$Ltemp1:dat$Ltime1:dat$LPres1:dat$Ftemp1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$Ltime1:dat$LPres1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$Ltime1:dat$Ftemp1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$LPres1:dat$Ftemp1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltime1:dat$LPres1:dat$Ftemp1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$Ltime1:dat$LPres1:dat$Ftemp1:dat$Fctime1:dat$Fdpoint1 NA
## Std. Error
## (Intercept) 0.0014760
## dat$Ltemp1 0.0014760
## dat$Ltime1 0.0018077
## dat$LPres1 0.0014760
## dat$Ftemp1 0.0020874
## dat$Fctime1 0.0010437
## dat$Fdpoint1 0.0010437
## dat$Ltemp1:dat$Ltime1 0.0020874
## dat$Ltemp1:dat$LPres1 NA
## dat$Ltime1:dat$LPres1 0.0020874
## dat$Ltemp1:dat$Ftemp1 0.0020874
## dat$Ltime1:dat$Ftemp1 0.0025565
## dat$LPres1:dat$Ftemp1 0.0020874
## dat$Ltemp1:dat$Fctime1 NA
## dat$Ltime1:dat$Fctime1 NA
## dat$LPres1:dat$Fctime1 NA
## dat$Ftemp1:dat$Fctime1 0.0014760
## dat$Ltemp1:dat$Fdpoint1 NA
## dat$Ltime1:dat$Fdpoint1 NA
## dat$LPres1:dat$Fdpoint1 NA
## dat$Ftemp1:dat$Fdpoint1 0.0014760
## dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$Ltime1:dat$LPres1 NA
## dat$Ltemp1:dat$Ltime1:dat$Ftemp1 0.0029520
## dat$Ltemp1:dat$LPres1:dat$Ftemp1 NA
## dat$Ltime1:dat$LPres1:dat$Ftemp1 0.0029520
## dat$Ltemp1:dat$Ltime1:dat$Fctime1 NA
## dat$Ltemp1:dat$LPres1:dat$Fctime1 NA
## dat$Ltime1:dat$LPres1:dat$Fctime1 NA
## dat$Ltemp1:dat$Ftemp1:dat$Fctime1 NA
## dat$Ltime1:dat$Ftemp1:dat$Fctime1 NA
## dat$LPres1:dat$Ftemp1:dat$Fctime1 NA
## dat$Ltemp1:dat$Ltime1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$LPres1:dat$Fdpoint1 NA
## dat$Ltime1:dat$LPres1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$Ftemp1:dat$Fdpoint1 NA
## dat$Ltime1:dat$Ftemp1:dat$Fdpoint1 NA
## dat$LPres1:dat$Ftemp1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltime1:dat$Fctime1:dat$Fdpoint1 NA
## dat$LPres1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ftemp1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$Ltime1:dat$LPres1:dat$Ftemp1 NA
## dat$Ltemp1:dat$Ltime1:dat$LPres1:dat$Fctime1 NA
## dat$Ltemp1:dat$Ltime1:dat$Ftemp1:dat$Fctime1 NA
## dat$Ltemp1:dat$LPres1:dat$Ftemp1:dat$Fctime1 NA
## dat$Ltime1:dat$LPres1:dat$Ftemp1:dat$Fctime1 NA
## dat$Ltemp1:dat$Ltime1:dat$LPres1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$Ltime1:dat$Ftemp1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$LPres1:dat$Ftemp1:dat$Fdpoint1 NA
## dat$Ltime1:dat$LPres1:dat$Ftemp1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$Ltime1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$LPres1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltime1:dat$LPres1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$Ftemp1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltime1:dat$Ftemp1:dat$Fctime1:dat$Fdpoint1 NA
## dat$LPres1:dat$Ftemp1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$Ltime1:dat$LPres1:dat$Ftemp1:dat$Fctime1 NA
## dat$Ltemp1:dat$Ltime1:dat$LPres1:dat$Ftemp1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$Ltime1:dat$LPres1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$Ltime1:dat$Ftemp1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$LPres1:dat$Ftemp1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltime1:dat$LPres1:dat$Ftemp1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$Ltime1:dat$LPres1:dat$Ftemp1:dat$Fctime1:dat$Fdpoint1 NA
## t value
## (Intercept) 10.654
## dat$Ltemp1 2.202
## dat$Ltime1 -3.948
## dat$LPres1 2.727
## dat$Ftemp1 -5.126
## dat$Fctime1 -4.012
## dat$Fdpoint1 -9.570
## dat$Ltemp1:dat$Ltime1 1.785
## dat$Ltemp1:dat$LPres1 NA
## dat$Ltime1:dat$LPres1 3.401
## dat$Ltemp1:dat$Ftemp1 -1.222
## dat$Ltime1:dat$Ftemp1 3.117
## dat$LPres1:dat$Ftemp1 -0.228
## dat$Ltemp1:dat$Fctime1 NA
## dat$Ltime1:dat$Fctime1 NA
## dat$LPres1:dat$Fctime1 NA
## dat$Ftemp1:dat$Fctime1 1.004
## dat$Ltemp1:dat$Fdpoint1 NA
## dat$Ltime1:dat$Fdpoint1 NA
## dat$LPres1:dat$Fdpoint1 NA
## dat$Ftemp1:dat$Fdpoint1 10.497
## dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$Ltime1:dat$LPres1 NA
## dat$Ltemp1:dat$Ltime1:dat$Ftemp1 0.072
## dat$Ltemp1:dat$LPres1:dat$Ftemp1 NA
## dat$Ltime1:dat$LPres1:dat$Ftemp1 -2.350
## dat$Ltemp1:dat$Ltime1:dat$Fctime1 NA
## dat$Ltemp1:dat$LPres1:dat$Fctime1 NA
## dat$Ltime1:dat$LPres1:dat$Fctime1 NA
## dat$Ltemp1:dat$Ftemp1:dat$Fctime1 NA
## dat$Ltime1:dat$Ftemp1:dat$Fctime1 NA
## dat$LPres1:dat$Ftemp1:dat$Fctime1 NA
## dat$Ltemp1:dat$Ltime1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$LPres1:dat$Fdpoint1 NA
## dat$Ltime1:dat$LPres1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$Ftemp1:dat$Fdpoint1 NA
## dat$Ltime1:dat$Ftemp1:dat$Fdpoint1 NA
## dat$LPres1:dat$Ftemp1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltime1:dat$Fctime1:dat$Fdpoint1 NA
## dat$LPres1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ftemp1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$Ltime1:dat$LPres1:dat$Ftemp1 NA
## dat$Ltemp1:dat$Ltime1:dat$LPres1:dat$Fctime1 NA
## dat$Ltemp1:dat$Ltime1:dat$Ftemp1:dat$Fctime1 NA
## dat$Ltemp1:dat$LPres1:dat$Ftemp1:dat$Fctime1 NA
## dat$Ltime1:dat$LPres1:dat$Ftemp1:dat$Fctime1 NA
## dat$Ltemp1:dat$Ltime1:dat$LPres1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$Ltime1:dat$Ftemp1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$LPres1:dat$Ftemp1:dat$Fdpoint1 NA
## dat$Ltime1:dat$LPres1:dat$Ftemp1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$Ltime1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$LPres1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltime1:dat$LPres1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$Ftemp1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltime1:dat$Ftemp1:dat$Fctime1:dat$Fdpoint1 NA
## dat$LPres1:dat$Ftemp1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$Ltime1:dat$LPres1:dat$Ftemp1:dat$Fctime1 NA
## dat$Ltemp1:dat$Ltime1:dat$LPres1:dat$Ftemp1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$Ltime1:dat$LPres1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$Ltime1:dat$Ftemp1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$LPres1:dat$Ftemp1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltime1:dat$LPres1:dat$Ftemp1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$Ltime1:dat$LPres1:dat$Ftemp1:dat$Fctime1:dat$Fdpoint1 NA
## Pr(>|t|)
## (Intercept) 3.06e-14
## dat$Ltemp1 0.032509
## dat$Ltime1 0.000257
## dat$LPres1 0.008899
## dat$Ftemp1 5.24e-06
## dat$Fctime1 0.000210
## dat$Fdpoint1 1.05e-12
## dat$Ltemp1:dat$Ltime1 0.080655
## dat$Ltemp1:dat$LPres1 NA
## dat$Ltime1:dat$LPres1 0.001359
## dat$Ltemp1:dat$Ftemp1 0.227809
## dat$Ltime1:dat$Ftemp1 0.003083
## dat$LPres1:dat$Ftemp1 0.820954
## dat$Ltemp1:dat$Fctime1 NA
## dat$Ltime1:dat$Fctime1 NA
## dat$LPres1:dat$Fctime1 NA
## dat$Ftemp1:dat$Fctime1 0.320619
## dat$Ltemp1:dat$Fdpoint1 NA
## dat$Ltime1:dat$Fdpoint1 NA
## dat$LPres1:dat$Fdpoint1 NA
## dat$Ftemp1:dat$Fdpoint1 5.05e-14
## dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$Ltime1:dat$LPres1 NA
## dat$Ltemp1:dat$Ltime1:dat$Ftemp1 0.942912
## dat$Ltemp1:dat$LPres1:dat$Ftemp1 NA
## dat$Ltime1:dat$LPres1:dat$Ftemp1 0.022926
## dat$Ltemp1:dat$Ltime1:dat$Fctime1 NA
## dat$Ltemp1:dat$LPres1:dat$Fctime1 NA
## dat$Ltime1:dat$LPres1:dat$Fctime1 NA
## dat$Ltemp1:dat$Ftemp1:dat$Fctime1 NA
## dat$Ltime1:dat$Ftemp1:dat$Fctime1 NA
## dat$LPres1:dat$Ftemp1:dat$Fctime1 NA
## dat$Ltemp1:dat$Ltime1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$LPres1:dat$Fdpoint1 NA
## dat$Ltime1:dat$LPres1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$Ftemp1:dat$Fdpoint1 NA
## dat$Ltime1:dat$Ftemp1:dat$Fdpoint1 NA
## dat$LPres1:dat$Ftemp1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltime1:dat$Fctime1:dat$Fdpoint1 NA
## dat$LPres1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ftemp1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$Ltime1:dat$LPres1:dat$Ftemp1 NA
## dat$Ltemp1:dat$Ltime1:dat$LPres1:dat$Fctime1 NA
## dat$Ltemp1:dat$Ltime1:dat$Ftemp1:dat$Fctime1 NA
## dat$Ltemp1:dat$LPres1:dat$Ftemp1:dat$Fctime1 NA
## dat$Ltime1:dat$LPres1:dat$Ftemp1:dat$Fctime1 NA
## dat$Ltemp1:dat$Ltime1:dat$LPres1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$Ltime1:dat$Ftemp1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$LPres1:dat$Ftemp1:dat$Fdpoint1 NA
## dat$Ltime1:dat$LPres1:dat$Ftemp1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$Ltime1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$LPres1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltime1:dat$LPres1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$Ftemp1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltime1:dat$Ftemp1:dat$Fctime1:dat$Fdpoint1 NA
## dat$LPres1:dat$Ftemp1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$Ltime1:dat$LPres1:dat$Ftemp1:dat$Fctime1 NA
## dat$Ltemp1:dat$Ltime1:dat$LPres1:dat$Ftemp1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$Ltime1:dat$LPres1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$Ltime1:dat$Ftemp1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$LPres1:dat$Ftemp1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltime1:dat$LPres1:dat$Ftemp1:dat$Fctime1:dat$Fdpoint1 NA
## dat$Ltemp1:dat$Ltime1:dat$LPres1:dat$Ftemp1:dat$Fctime1:dat$Fdpoint1 NA
##
## (Intercept) ***
## dat$Ltemp1 *
## dat$Ltime1 ***
## dat$LPres1 **
## dat$Ftemp1 ***
## dat$Fctime1 ***
## dat$Fdpoint1 ***
## dat$Ltemp1:dat$Ltime1 .
## dat$Ltemp1:dat$LPres1
## dat$Ltime1:dat$LPres1 **
## dat$Ltemp1:dat$Ftemp1
## dat$Ltime1:dat$Ftemp1 **
## dat$LPres1:dat$Ftemp1
## dat$Ltemp1:dat$Fctime1
## dat$Ltime1:dat$Fctime1
## dat$LPres1:dat$Fctime1
## dat$Ftemp1:dat$Fctime1
## dat$Ltemp1:dat$Fdpoint1
## dat$Ltime1:dat$Fdpoint1
## dat$LPres1:dat$Fdpoint1
## dat$Ftemp1:dat$Fdpoint1 ***
## dat$Fctime1:dat$Fdpoint1
## dat$Ltemp1:dat$Ltime1:dat$LPres1
## dat$Ltemp1:dat$Ltime1:dat$Ftemp1
## dat$Ltemp1:dat$LPres1:dat$Ftemp1
## dat$Ltime1:dat$LPres1:dat$Ftemp1 *
## dat$Ltemp1:dat$Ltime1:dat$Fctime1
## dat$Ltemp1:dat$LPres1:dat$Fctime1
## dat$Ltime1:dat$LPres1:dat$Fctime1
## dat$Ltemp1:dat$Ftemp1:dat$Fctime1
## dat$Ltime1:dat$Ftemp1:dat$Fctime1
## dat$LPres1:dat$Ftemp1:dat$Fctime1
## dat$Ltemp1:dat$Ltime1:dat$Fdpoint1
## dat$Ltemp1:dat$LPres1:dat$Fdpoint1
## dat$Ltime1:dat$LPres1:dat$Fdpoint1
## dat$Ltemp1:dat$Ftemp1:dat$Fdpoint1
## dat$Ltime1:dat$Ftemp1:dat$Fdpoint1
## dat$LPres1:dat$Ftemp1:dat$Fdpoint1
## dat$Ltemp1:dat$Fctime1:dat$Fdpoint1
## dat$Ltime1:dat$Fctime1:dat$Fdpoint1
## dat$LPres1:dat$Fctime1:dat$Fdpoint1
## dat$Ftemp1:dat$Fctime1:dat$Fdpoint1
## dat$Ltemp1:dat$Ltime1:dat$LPres1:dat$Ftemp1
## dat$Ltemp1:dat$Ltime1:dat$LPres1:dat$Fctime1
## dat$Ltemp1:dat$Ltime1:dat$Ftemp1:dat$Fctime1
## dat$Ltemp1:dat$LPres1:dat$Ftemp1:dat$Fctime1
## dat$Ltime1:dat$LPres1:dat$Ftemp1:dat$Fctime1
## dat$Ltemp1:dat$Ltime1:dat$LPres1:dat$Fdpoint1
## dat$Ltemp1:dat$Ltime1:dat$Ftemp1:dat$Fdpoint1
## dat$Ltemp1:dat$LPres1:dat$Ftemp1:dat$Fdpoint1
## dat$Ltime1:dat$LPres1:dat$Ftemp1:dat$Fdpoint1
## dat$Ltemp1:dat$Ltime1:dat$Fctime1:dat$Fdpoint1
## dat$Ltemp1:dat$LPres1:dat$Fctime1:dat$Fdpoint1
## dat$Ltime1:dat$LPres1:dat$Fctime1:dat$Fdpoint1
## dat$Ltemp1:dat$Ftemp1:dat$Fctime1:dat$Fdpoint1
## dat$Ltime1:dat$Ftemp1:dat$Fctime1:dat$Fdpoint1
## dat$LPres1:dat$Ftemp1:dat$Fctime1:dat$Fdpoint1
## dat$Ltemp1:dat$Ltime1:dat$LPres1:dat$Ftemp1:dat$Fctime1
## dat$Ltemp1:dat$Ltime1:dat$LPres1:dat$Ftemp1:dat$Fdpoint1
## dat$Ltemp1:dat$Ltime1:dat$LPres1:dat$Fctime1:dat$Fdpoint1
## dat$Ltemp1:dat$Ltime1:dat$Ftemp1:dat$Fctime1:dat$Fdpoint1
## dat$Ltemp1:dat$LPres1:dat$Ftemp1:dat$Fctime1:dat$Fdpoint1
## dat$Ltime1:dat$LPres1:dat$Ftemp1:dat$Fctime1:dat$Fdpoint1
## dat$Ltemp1:dat$Ltime1:dat$LPres1:dat$Ftemp1:dat$Fctime1:dat$Fdpoint1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.002952 on 48 degrees of freedom
## Multiple R-squared: 0.849, Adjusted R-squared: 0.8018
## F-statistic: 18 on 15 and 48 DF, p-value: 9.012e-15
O = 8
AD =10
BD =12
AB =7
CD =13
AC = 6
BC =5
ABCD =11
EffectA <- (2*(AD+AB+AC+ABCD-O-BD-CD-BC))/(8)
EffectA
## [1] -1
EffectB <- (2*(BD+AB+BC+ABCD-O-AD-CD-AC))/(8)
EffectB
## [1] -0.5
EffectC <- (2*(CD+AC+BC+ABCD-O-AD-BD-AB))/(8)
EffectC
## [1] -0.5
EffectD <- (2*(AD+BD+CD+ABCD-O-AB-AC-BC))/(8)
EffectD
## [1] 5
a <- c(rep(c(-1,1),4))
b <- c(rep(c(-1,-1,1,1),2))
c <- c(rep(c(-1,-1,-1,-1,1,1,1,1),1))
d <- c(-1,1,1,-1,1,-1,-1,1)
resp <- c(8,10,12,7,13,6,5,11)
dataeff <- data.frame(a,b,c,d,resp)
modeleff <- lm(resp~a*b*c*d,data = dataeff)
coeff <- coef(modeleff)
effects <- coeff*2
effects
## (Intercept) a b c d a:b
## 18.0 -1.0 -0.5 -0.5 5.0 1.5
## a:c b:c a:d b:d c:d a:b:c
## 0.5 -1.0 NA NA NA NA
## a:b:d a:c:d b:c:d a:b:c:d
## NA NA NA NA
des <- FrF2(nfactors=7,resolution=3,randomize=FALSE)
des
## A B C D E F G
## 1 -1 -1 -1 1 1 1 -1
## 2 1 -1 -1 -1 -1 1 1
## 3 -1 1 -1 -1 1 -1 1
## 4 1 1 -1 1 -1 -1 -1
## 5 -1 -1 1 1 -1 -1 1
## 6 1 -1 1 -1 1 -1 -1
## 7 -1 1 1 -1 -1 1 -1
## 8 1 1 1 1 1 1 1
## class=design, type= FrF2
des2 <- fold.design(des,column=1)
des2
## A B C fold D E F G
## 1 -1 -1 -1 original 1 1 1 -1
## 2 1 -1 -1 original -1 -1 1 1
## 3 -1 1 -1 original -1 1 -1 1
## 4 1 1 -1 original 1 -1 -1 -1
## 5 -1 -1 1 original 1 -1 -1 1
## 6 1 -1 1 original -1 1 -1 -1
## 7 -1 1 1 original -1 -1 1 -1
## 8 1 1 1 original 1 1 1 1
## 9 1 -1 -1 mirror 1 1 1 -1
## 10 -1 -1 -1 mirror -1 -1 1 1
## 11 1 1 -1 mirror -1 1 -1 1
## 12 -1 1 -1 mirror 1 -1 -1 -1
## 13 1 -1 1 mirror 1 -1 -1 1
## 14 -1 -1 1 mirror -1 1 -1 -1
## 15 1 1 1 mirror -1 -1 1 -1
## 16 -1 1 1 mirror 1 1 1 1
## class=design, type= FrF2.folded
typeof(des2)
## [1] "list"
des3 <- des2[-c(1,3,5,7,10,12,14,16),]
des3
## A B C fold D E F G
## 2 1 -1 -1 original -1 -1 1 1
## 4 1 1 -1 original 1 -1 -1 -1
## 6 1 -1 1 original -1 1 -1 -1
## 8 1 1 1 original 1 1 1 1
## 9 1 -1 -1 mirror 1 1 1 -1
## 11 1 1 -1 mirror -1 1 -1 1
## 13 1 -1 1 mirror 1 -1 -1 1
## 15 1 1 1 mirror -1 -1 1 -1
aliasprint(des2)
## $legend
## [1] A=A B=B C=C D=fold E=D F=E G=F H=G
##
## $main
## [1] B=CG=FH C=BG=EH E=CH=FG F=BH=EG G=BC=EF H=BF=CE
##
## $fi2
## [1] AB=-DE AC=-DF AD=-BE=-CF=-GH AE=-BD AF=-CD
## [6] AG=-DH AH=-DG
#aliasprint(des3)