T1 = c(66,66,67,67,66,66)
T2 = c(62,63,62,63,64,63)
T3 = c(72,71,72,72,71,70)
T4 = c(80,72,73,72,72,74)
T5 = c(75,77,78,77,77,74)
T6 = c(90,88,87,88,90,91)
T7 = c(64,64,65,63,66,62)
T8 = c(65,66,65,66,66,67)
T9 = c(71,70,71,66,68,69)
T10 = c(60,61,61,62,62,60)
Hipotesis
\[H_0: \mu_{T1}==\mu_{T2}==\mu_{T3}==\mu_{T4}==\mu_{T5}==\mu_{T6}==\mu_{T7}==\mu_{T8}==\mu_{T9}==\mu_{T10}\] \[H_a:\mu_{T1}~!=~\mu_{T2}~!=~\mu_{T3}!=~\mu_{T4}~!=~\mu_{T5}~!=~\mu_{T6}~!=~\mu_{T7}~!=~\mu_{T8}~!=~\mu_{T9}~!=~\mu_{10}~!\]
DA = data.frame(DA=c(T1,T2,T3,T4,T5,T6,T7,T8,T9,T10))
summary(DA)
## DA
## Min. :60.00
## 1st Qu.:64.00
## Median :67.00
## Mean :69.97
## 3rd Qu.:72.25
## Max. :91.00
metodo=gl(10,6,60,c("T1","T2","T3","T4","T5","T6","T7","T8","T9","T10"));metodo
## [1] T1 T1 T1 T1 T1 T1 T2 T2 T2 T2 T2 T2 T3 T3 T3 T3 T3 T3 T4
## [20] T4 T4 T4 T4 T4 T5 T5 T5 T5 T5 T5 T6 T6 T6 T6 T6 T6 T7 T7
## [39] T7 T7 T7 T7 T8 T8 T8 T8 T8 T8 T9 T9 T9 T9 T9 T9 T10 T10 T10
## [58] T10 T10 T10
## Levels: T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
dfm = data.frame(DA,metodo)
head(dfm,10)
## DA metodo
## 1 66 T1
## 2 66 T1
## 3 67 T1
## 4 67 T1
## 5 66 T1
## 6 66 T1
## 7 62 T2
## 8 63 T2
## 9 62 T2
## 10 63 T2
medias= tapply(dfm$DA, dfm$metodo, mean)
boxplot(dfm$DA~dfm$metodo)
points(medias,col="blue",pch=16)
abline(h=mean(dfm$DA), lty=2)
sd=tapply(dfm$DA, dfm$metodo, sd);sd
## T1 T2 T3 T4 T5 T6 T7 T8
## 0.5163978 0.7527727 0.8164966 3.1251667 1.5055453 1.5491933 1.4142136 0.7527727
## T9 T10
## 1.9407902 0.8944272
library(pander)
## Warning: package 'pander' was built under R version 4.1.2
ANV=aov(dfm$DA~dfm$metodo)
summary(ANV)
## Df Sum Sq Mean Sq F value Pr(>F)
## dfm$metodo 9 3705 411.6 178.4 <2e-16 ***
## Residuals 50 115 2.3
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fvalue = unlist(summary(ANV))[[7]]
fvalue
## [1] 178.4489
p_value = unlist(summary(ANV))[[9]]
ifelse(p_value<0.05,
"Rechazo Ho: metodos no iguales ",
"No rechazo Ho: metodos iguales")
## [1] "Rechazo Ho: metodos no iguales "
residuales=ANV$residuals
#Normalidad de los datos
shapiro.test(residuales)
##
## Shapiro-Wilk normality test
##
## data: residuales
## W = 0.91358, p-value = 0.0004271
hist(residuales)
#Homogeneidad de varianzas
bartlett.test(residuales,dfm$metodo)
##
## Bartlett test of homogeneity of variances
##
## data: residuales and dfm$metodo
## Bartlett's K-squared = 25.399, df = 9, p-value = 0.00256
#Datos atipicos
library(outliers)
grubbs.test(ANV$residuals, type = 10, opposite = FALSE, two.sided = TRUE)
##
## Grubbs test for one outlier
##
## data: ANV$residuals
## G.19 = 4.41061, U = 0.66469, p-value = 7.523e-05
## alternative hypothesis: highest value 6.16666666666667 is an outlier
#Maximo residual
which.max(ANV$residuals)
## 19
## 19
ANV$residuals[60]
## 60
## -1
medias
## T1 T2 T3 T4 T5 T6 T7 T8
## 66.33333 62.83333 71.33333 73.83333 76.33333 89.00000 64.00000 65.83333
## T9 T10
## 69.16667 61.00000
modc = aov (dfm$DA~dfm$metodo)
summary(modc)
## Df Sum Sq Mean Sq F value Pr(>F)
## dfm$metodo 9 3705 411.6 178.4 <2e-16 ***
## Residuals 50 115 2.3
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1