Question 8.2

library(FrF2)
## Loading required package: DoE.base
## Loading required package: grid
## Loading required package: conf.design
## Registered S3 method overwritten by 'DoE.base':
##   method           from       
##   factorize.factor conf.design
## 
## Attaching package: 'DoE.base'
## The following objects are masked from 'package:stats':
## 
##     aov, lm
## The following object is masked from 'package:graphics':
## 
##     plot.design
## The following object is masked from 'package:base':
## 
##     lengths
library(DoE.base)
response<-FrF2(nfactors=4,resolution=4,randomize=FALSE)

observations<-c(7.037,16.867,13.867,17.273,11.846,4.368,9.360,15.653)
response <- add.response(response,observations)
DanielPlot(response,half=TRUE)

MEPlot(response,show.alias=TRUE)

in the above plot no factor is significant.

Question 8.24

response<-FrF2(nfactors=6,resolution=5,randomize=FALSE,blocks=2,nruns=16)
## Warning in FrF2(nfactors = 6, resolution = 5, randomize = FALSE, blocks = 2, :
## resolution is ignored, if nruns is given.
summary(response)
## Call:
## FrF2(nfactors = 6, resolution = 5, randomize = FALSE, blocks = 2, 
##     nruns = 16)
## 
## Experimental design of type  FrF2.blocked 
## 16  runs
## blocked design with  2  blocks of size  8 
## 
## Factor settings (scale ends):
##    A  B  C  D  E  F
## 1 -1 -1 -1 -1 -1 -1
## 2  1  1  1  1  1  1
## 
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D E=E F=F
## 
## $`generators for design itself`
## [1] E=ABC F=ABD
## 
## $`block generators`
## [1] ACD
## 
## 
## Alias structure:
## $fi2
## [1] AB=CE=DF AC=BE    AD=BF    AE=BC    AF=BD    CD=EF    CF=DE   
## 
## Aliased with block main effects:
## [1] none
## 
## The design itself:
##   run.no run.no.std.rp Blocks  A  B  C  D  E  F
## 1      1         1.1.1      1 -1 -1 -1 -1 -1 -1
## 2      2         4.1.2      1 -1 -1  1  1  1  1
## 3      3         5.1.3      1 -1  1 -1 -1  1  1
## 4      4         8.1.4      1 -1  1  1  1 -1 -1
## 5      5        10.1.5      1  1 -1 -1  1  1 -1
## 6      6        11.1.6      1  1 -1  1 -1 -1  1
## 7      7        14.1.7      1  1  1 -1  1 -1  1
## 8      8        15.1.8      1  1  1  1 -1  1 -1
##    run.no run.no.std.rp Blocks  A  B  C  D  E  F
## 9       9         2.2.1      2 -1 -1 -1  1 -1  1
## 10     10         3.2.2      2 -1 -1  1 -1  1 -1
## 11     11         6.2.3      2 -1  1 -1  1  1 -1
## 12     12         7.2.4      2 -1  1  1 -1 -1  1
## 13     13         9.2.5      2  1 -1 -1 -1  1  1
## 14     14        12.2.6      2  1 -1  1  1 -1 -1
## 15     15        13.2.7      2  1  1 -1 -1 -1 -1
## 16     16        16.2.8      2  1  1  1  1  1  1
## class=design, type= FrF2.blocked 
## NOTE: columns run.no and run.no.std.rp  are annotation, 
##  not part of the data frame

main effects/two-factor interactions are not confounded with the block.

Question 8.25

response<-FrF2(nfactors=7,resolution=3,randomize=FALSE,blocks=4,nruns=32)
## Warning in FrF2(nfactors = 7, resolution = 3, randomize = FALSE, blocks = 4, :
## resolution is ignored, if nruns is given.
summary(response)
## Call:
## FrF2(nfactors = 7, resolution = 3, randomize = FALSE, blocks = 4, 
##     nruns = 32)
## 
## Experimental design of type  FrF2.blocked 
## 32  runs
## blocked design with  4  blocks of size  8 
## 
## Factor settings (scale ends):
##    A  B  C  D  E  F  G
## 1 -1 -1 -1 -1 -1 -1 -1
## 2  1  1  1  1  1  1  1
## 
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D E=E F=F G=G
## 
## $`generators for design itself`
## [1] F=ABC G=ABD
## 
## $`block generators`
## [1] ACD ABE
## 
## 
## Alias structure:
## $fi2
## [1] AB=CF=DG AC=BF    AD=BG    AF=BC    AG=BD    CD=FG    CG=DF   
## 
## Aliased with block main effects:
## [1] none
## 
## The design itself:
##   run.no run.no.std.rp Blocks  A  B  C  D  E  F  G
## 1      1         1.1.1      1 -1 -1 -1 -1 -1 -1 -1
## 2      2         7.1.2      1 -1 -1  1  1 -1  1  1
## 3      3        10.1.3      1 -1  1 -1 -1  1  1  1
## 4      4        16.1.4      1 -1  1  1  1  1 -1 -1
## 5      5        20.1.5      1  1 -1 -1  1  1  1 -1
## 6      6        22.1.6      1  1 -1  1 -1  1 -1  1
## 7      7        27.1.7      1  1  1 -1  1 -1 -1  1
## 8      8        29.1.8      1  1  1  1 -1 -1  1 -1
##    run.no run.no.std.rp Blocks  A  B  C  D  E  F  G
## 9       9         2.2.1      2 -1 -1 -1 -1  1 -1 -1
## 10     10         8.2.2      2 -1 -1  1  1  1  1  1
## 11     11         9.2.3      2 -1  1 -1 -1 -1  1  1
## 12     12        15.2.4      2 -1  1  1  1 -1 -1 -1
## 13     13        19.2.5      2  1 -1 -1  1 -1  1 -1
## 14     14        21.2.6      2  1 -1  1 -1 -1 -1  1
## 15     15        28.2.7      2  1  1 -1  1  1 -1  1
## 16     16        30.2.8      2  1  1  1 -1  1  1 -1
##    run.no run.no.std.rp Blocks  A  B  C  D  E  F  G
## 17     17         3.3.1      3 -1 -1 -1  1 -1 -1  1
## 18     18         5.3.2      3 -1 -1  1 -1 -1  1 -1
## 19     19        12.3.3      3 -1  1 -1  1  1  1 -1
## 20     20        14.3.4      3 -1  1  1 -1  1 -1  1
## 21     21        18.3.5      3  1 -1 -1 -1  1  1  1
## 22     22        24.3.6      3  1 -1  1  1  1 -1 -1
## 23     23        25.3.7      3  1  1 -1 -1 -1 -1 -1
## 24     24        31.3.8      3  1  1  1  1 -1  1  1
##    run.no run.no.std.rp Blocks  A  B  C  D  E  F  G
## 25     25         4.4.1      4 -1 -1 -1  1  1 -1  1
## 26     26         6.4.2      4 -1 -1  1 -1  1  1 -1
## 27     27        11.4.3      4 -1  1 -1  1 -1  1 -1
## 28     28        13.4.4      4 -1  1  1 -1 -1 -1  1
## 29     29        17.4.5      4  1 -1 -1 -1 -1  1  1
## 30     30        23.4.6      4  1 -1  1  1 -1 -1 -1
## 31     31        26.4.7      4  1  1 -1 -1  1 -1 -1
## 32     32        32.4.8      4  1  1  1  1  1  1  1
## class=design, type= FrF2.blocked 
## NOTE: columns run.no and run.no.std.rp  are annotation, 
##  not part of the data frame

main effects/two factor interactions are not confounded with the blocks.

Question 8.28

response<- FrF2(nfactors = 6,nruns = 16,generators = c("ABC","ACD"), randomize = FALSE)
summary(response)
## Call:
## FrF2(nfactors = 6, nruns = 16, generators = c("ABC", "ACD"), 
##     randomize = FALSE)
## 
## Experimental design of type  FrF2.generators 
## 16  runs
## 
## Factor settings (scale ends):
##    A  B  C  D  E  F
## 1 -1 -1 -1 -1 -1 -1
## 2  1  1  1  1  1  1
## 
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D E=E F=F
## 
## $generators
## [1] E=ABC F=ACD
## 
## 
## Alias structure:
## $fi2
## [1] AB=CE    AC=BE=DF AD=CF    AE=BC    AF=CD    BD=EF    BF=DE   
## 
## 
## The design itself:
##     A  B  C  D  E  F
## 1  -1 -1 -1 -1 -1 -1
## 2   1 -1 -1 -1  1  1
## 3  -1  1 -1 -1  1 -1
## 4   1  1 -1 -1 -1  1
## 5  -1 -1  1 -1  1  1
## 6   1 -1  1 -1 -1 -1
## 7  -1  1  1 -1 -1  1
## 8   1  1  1 -1  1 -1
## 9  -1 -1 -1  1 -1  1
## 10  1 -1 -1  1  1 -1
## 11 -1  1 -1  1  1  1
## 12  1  1 -1  1 -1 -1
## 13 -1 -1  1  1  1 -1
## 14  1 -1  1  1 -1  1
## 15 -1  1  1  1 -1 -1
## 16  1  1  1  1  1  1
## class=design, type= FrF2.generators
aliasprint(response)
## $legend
## [1] A=A B=B C=C D=D E=E F=F
## 
## $main
## character(0)
## 
## $fi2
## [1] AB=CE    AC=BE=DF AD=CF    AE=BC    AF=CD    BD=EF    BF=DE
fact <- c(0.0167,0.0062,0.0041,0.0073,0.0047,0.0219,0.0121,0.0255,0.0032,0.0078,0.0043,0.0186,0.0110,0.0065,0.0155,0.0093,
              0.0128,0.0066,0.0043,0.0081,0.0047,0.0258,0.0090,0.0250,0.0023,0.0158,0.0027,0.0137,0.0086,0.0109,0.0158,0.0124,
              0.0149,0.0044,0.0042,0.0039,0.0040,0.0147,0.0092,0.0226,0.0077,0.0060,0.0028,0.0158,0.0101,0.0126,0.0145,0.0110,
              0.0185,0.0020,0.0050,0.0030,0.0089,0.0296,0.0086,0.0169,0.0069,0.0045,0.0028,0.0159,0.0158,0.0071,0.0145,0.013)

a1 <- rep(response$A,4)
b2 <- rep(response$B,4)
c3 <- rep(response$C,4)
d4 <- rep(response$D,4)
e5 <- rep(response$E,4)
f6 <- rep(response$F,4)
model <- aov(fact~a1*b2*c3*d4*e5*f6)
summary(model)
##             Df    Sum Sq   Mean Sq F value   Pr(>F)    
## a1           1 0.0002410 0.0002410  27.726 3.24e-06 ***
## b2           1 0.0000052 0.0000052   0.595  0.44413    
## c3           1 0.0005006 0.0005006  57.591 9.26e-10 ***
## d4           1 0.0000328 0.0000328   3.770  0.05805 .  
## e5           1 0.0001911 0.0001911  21.987 2.30e-05 ***
## f6           1 0.0009626 0.0009626 110.727 4.65e-14 ***
## a1:b2        1 0.0000581 0.0000581   6.688  0.01279 *  
## a1:c3        1 0.0000797 0.0000797   9.163  0.00396 ** 
## b2:c3        1 0.0000522 0.0000522   6.005  0.01796 *  
## a1:d4        1 0.0000243 0.0000243   2.790  0.10135    
## b2:d4        1 0.0000842 0.0000842   9.684  0.00313 ** 
## c3:d4        1 0.0000628 0.0000628   7.225  0.00985 ** 
## d4:e5        1 0.0000086 0.0000086   0.984  0.32614    
## a1:b2:d4     1 0.0000000 0.0000000   0.004  0.95292    
## b2:c3:d4     1 0.0000487 0.0000487   5.597  0.02208 *  
## Residuals   48 0.0004173 0.0000087                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
std <- c(24.418,20.976,4.083,25.025,22.410,63.639,16.029,39.42,26.725,50.341,7.681,20.083,31.12,29.51,6.75,17.45)
experiment <- aov(std~A*B*C*D*E*F,data = response)
halfnormal(experiment,ME.partial = TRUE)
## 
## The following effects are completely aliased:
##  [1] A:E         B:E         C:E         A:F         B:F         C:F        
##  [7] D:F         E:F         A:B:C       A:C:D       A:B:E       A:C:E      
## [13] B:C:E       A:D:E       B:D:E       C:D:E       A:B:F       A:C:F      
## [19] B:C:F       A:D:F       B:D:F       C:D:F       A:E:F       B:E:F      
## [25] C:E:F       D:E:F       A:B:C:D     A:B:C:E     A:B:D:E     A:C:D:E    
## [31] B:C:D:E     A:B:C:F     A:B:D:F     A:C:D:F     B:C:D:F     A:B:E:F    
## [37] A:C:E:F     B:C:E:F     A:D:E:F     B:D:E:F     C:D:E:F     A:B:C:D:E  
## [43] A:B:C:D:F   A:B:C:E:F   A:B:D:E:F   A:C:D:E:F   B:C:D:E:F   A:B:C:D:E:F
## 
## Significant effects (alpha=0.05, Lenth method):
## [1] B1 A1

## In 2^6 design 1/4 fraction is used. ## Process Variables A,C,E,F affect average camber ## process variables A and B affect the variability in camber measurements.

Question 8.40

response <- FrF2(nfactors = 4, nruns = 8, randomize = FALSE)
M1 <- c(8,10,12,7,13,6,5,11)
expe<- add.response(response,M1)
summary(expe)
## Call:
## FrF2(nfactors = 4, nruns = 8, randomize = FALSE)
## 
## Experimental design of type  FrF2 
## 8  runs
## 
## Factor settings (scale ends):
##    A  B  C  D
## 1 -1 -1 -1 -1
## 2  1  1  1  1
## 
## Responses:
## [1] M1
## 
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D
## 
## $generators
## [1] D=ABC
## 
## 
## Alias structure:
## $fi2
## [1] AB=CD AC=BD AD=BC
## 
## 
## The design itself:
##    A  B  C  D M1
## 1 -1 -1 -1 -1  8
## 2  1 -1 -1  1 10
## 3 -1  1 -1  1 12
## 4  1  1 -1 -1  7
## 5 -1 -1  1  1 13
## 6  1 -1  1 -1  6
## 7 -1  1  1 -1  5
## 8  1  1  1  1 11
## class=design, type= FrF2
A <- rep(c(-1,1),4)
B <- rep(c(rep(-1,2),rep(1,2)),2)
C <- c(rep(-1,4),rep(1,4))
D <- A*B*C
model <- aov(M1~A*B*C*D)
coef(model)
## (Intercept)           A           B           C           D         A:B 
##        9.00       -0.50       -0.25       -0.25        2.50        0.75 
##         A:C         B:C 
##        0.25       -0.50

we investigated 4 factors,resolution is 4 in this experiment,defining relation is I = ABCD.

Question 8.48

N <- FrF2(nfactors = 5,nruns = 8,generators = c("-ABC","BC"), randomize = FALSE)
N
##    A  B  C  D  E
## 1 -1 -1 -1  1  1
## 2  1 -1 -1 -1  1
## 3 -1  1 -1 -1 -1
## 4  1  1 -1  1 -1
## 5 -1 -1  1 -1 -1
## 6  1 -1  1  1 -1
## 7 -1  1  1  1  1
## 8  1  1  1 -1  1
## class=design, type= FrF2.generators
summary(N)
## Call:
## FrF2(nfactors = 5, nruns = 8, generators = c("-ABC", "BC"), randomize = FALSE)
## 
## Experimental design of type  FrF2.generators 
## 8  runs
## 
## Factor settings (scale ends):
##    A  B  C  D  E
## 1 -1 -1 -1 -1 -1
## 2  1  1  1  1  1
## 
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D E=E
## 
## $generators
## [1] D=-ABC E=BC  
## 
## 
## Alias structure:
## $main
## [1] A=-DE    B=CE     C=BE     D=-AE    E=-AD=BC
## 
## $fi2
## [1] AB=-CD AC=-BD
## 
## 
## The design itself:
##    A  B  C  D  E
## 1 -1 -1 -1  1  1
## 2  1 -1 -1 -1  1
## 3 -1  1 -1 -1 -1
## 4  1  1 -1  1 -1
## 5 -1 -1  1 -1 -1
## 6  1 -1  1  1 -1
## 7 -1  1  1  1  1
## 8  1  1  1 -1  1
## class=design, type= FrF2.generators
N1 <-fold.design(N)
aliasprint(N1)
## $legend
## [1] A=A    B=B    C=C    D=fold E=D    F=E   
## 
## $main
## character(0)
## 
## $fi2
## [1] AB=-CE    AC=-BE    AD=EF     AE=-BC=DF AF=DE     BD=-CF    BF=-CD

Design generator for Factor D=-ABC,

Design generator for Factor E= BC,

Resolution of the combined design is Four.

question 8.60

response<-FrF2(nfactors=7,resolution=3,randomize=FALSE)
fold.design(response, columns = 1)
##     A  B  C     fold  D  E  F  G
## 1  -1 -1 -1 original  1  1  1 -1
## 2   1 -1 -1 original -1 -1  1  1
## 3  -1  1 -1 original -1  1 -1  1
## 4   1  1 -1 original  1 -1 -1 -1
## 5  -1 -1  1 original  1 -1 -1  1
## 6   1 -1  1 original -1  1 -1 -1
## 7  -1  1  1 original -1 -1  1 -1
## 8   1  1  1 original  1  1  1  1
## 9   1 -1 -1   mirror  1  1  1 -1
## 10 -1 -1 -1   mirror -1 -1  1  1
## 11  1  1 -1   mirror -1  1 -1  1
## 12 -1  1 -1   mirror  1 -1 -1 -1
## 13  1 -1  1   mirror  1 -1 -1  1
## 14 -1 -1  1   mirror -1  1 -1 -1
## 15  1  1  1   mirror -1 -1  1 -1
## 16 -1  1  1   mirror  1  1  1  1
## class=design, type= FrF2.folded
design.info(response)$aliased$main
## [1] "A=BD=CE=FG" "B=AD=CF=EG" "C=AE=BF=DG" "D=AB=CG=EF" "E=AC=BG=DF"
## [6] "F=AG=BC=DE" "G=AF=BE=CD"