Calcular probabilidades con variables aleatorias discretas y con variables aleatorias continuas con distribución uniforme
library(ggplot2)
library(dplyr)
library(gtools)
library(knitr)
library(cowplot) # Gráficas mismo renglones
options(scipen = 999) # Notación normal
dado <- c(1,2,3,4,5,6)
lanzar_dados <- data.frame(permutations(n=6, r = 2, v = dado, repeats.allowed = TRUE))
names(lanzar_dados) <- c("dado1", "dado2")
lanzar_dados <- cbind(lanzar_dados, suma = apply(X = lanzar_dados, MARGIN = 1, FUN = sum))
lanzar_dados
## dado1 dado2 suma
## 1 1 1 2
## 2 1 2 3
## 3 1 3 4
## 4 1 4 5
## 5 1 5 6
## 6 1 6 7
## 7 2 1 3
## 8 2 2 4
## 9 2 3 5
## 10 2 4 6
## 11 2 5 7
## 12 2 6 8
## 13 3 1 4
## 14 3 2 5
## 15 3 3 6
## 16 3 4 7
## 17 3 5 8
## 18 3 6 9
## 19 4 1 5
## 20 4 2 6
## 21 4 3 7
## 22 4 4 8
## 23 4 5 9
## 24 4 6 10
## 25 5 1 6
## 26 5 2 7
## 27 5 3 8
## 28 5 4 9
## 29 5 5 10
## 30 5 6 11
## 31 6 1 7
## 32 6 2 8
## 33 6 3 9
## 34 6 4 10
## 35 6 5 11
## 36 6 6 12
tabla <- lanzar_dados %>%
group_by(suma) %>%
summarise(frec = n())
tabla <- data.frame(tabla)
colnames(tabla) <- c('x', 'casos')
tabla
## x casos
## 1 2 1
## 2 3 2
## 3 4 3
## 4 5 4
## 5 6 5
## 6 7 6
## 7 8 5
## 8 9 4
## 9 10 3
## 10 11 2
## 11 12 1
n <- sum(tabla$casos)
tabla <- tabla %>%
mutate(f.prob = round(casos / n, 4))
tabla <- tabla %>%
mutate(f.acum = cumsum(f.prob))
tabla
## x casos f.prob f.acum
## 1 2 1 0.0278 0.0278
## 2 3 2 0.0556 0.0834
## 3 4 3 0.0833 0.1667
## 4 5 4 0.1111 0.2778
## 5 6 5 0.1389 0.4167
## 6 7 6 0.1667 0.5834
## 7 8 5 0.1389 0.7223
## 8 9 4 0.1111 0.8334
## 9 10 3 0.0833 0.9167
## 10 11 2 0.0556 0.9723
## 11 12 1 0.0278 1.0001
gfrecuencias <- ggplot(data = tabla) +
geom_col(aes(x = x, y = f.prob), fill= 'lightblue')
gfrecuencias
gacumulada <- ggplot(data = tabla) +
geom_line(aes(x = x, y = f.acum), col='blue') +
geom_point(aes(x = x, y = f.acum), col='red')
gacumulada
# Llamar la función o cargar el archivo en donde estpa la función
source ("https://raw.githubusercontent.com/rpizarrog/Probabilidad-y-EstadIstica-VIRTUAL-DISTANCIA/main/funciones/funciones.para.distribuciones.r")
\(P(f(x=3))\)
La probabilidad cuando x sea igual a 3
f.prob.discr(datos = tabla, discreta = 3, tipo = 0)
## f.prob
## 1 0.0556
\(P(f(x=7))\)
La probabilidad cuando x sea igual a 7
f.prob.discr(datos = tabla, discreta = 7, tipo = 0)
## f.prob
## 1 0.1667
\(P(F(x \ge7))\)
La probabilidad cuando x sea mayor o igual a 7 \(1 - P(F(X=6)) = P(7) + P(8) + P(9) + P(10) + P(11) + P(12)\)
f.prob.discr(datos = tabla, discreta = 7, tipo = 4)
## f.acum
## 1 0.5833
\(P(F(x \le 5))\)
La probabilidad cuando x sea menor o igual a 5
\(P(F(X\le5)) = P(2) + P(3) + P(4) + P(5)\)
f.prob.discr(datos = tabla, discreta = 5, tipo = 3)
## f.acum
## 1 0.2778
\(P(F(x < 5))\)
La probabilidad cuando x sea menor a 5
\(P(F(X > 5)) = P(6) + P(7) + P(8) ... P(12)\)
f.prob.discr(datos = tabla, discreta = 5, tipo = 2)
## f.acum
## 1 0.7222
Tres estudiantes agendan entrevistas para un empleo de verano en el Brookwood Institute. En cada caso el resultado de la entrevista será una oferta de trabajo o ninguna oferta. Los resultados experimentales se definen en términos de los resultados de las tres entrevistas. [@lind2015].
Enumere los resultados experimentales.
Defina una variable aleatoria que represente el número de ofertas de trabajo. ¿Es una variable aleatoria discreta o continua?
Dé el valor de la variable aleatoria que corresponde a cada uno de los resultados experimentales. [@lind2015].
resultado <- c(1,0) # 1 Si le ofrecen, 0 No le ofrecen
S <- permutations(resultado, n = 2, r = 3, repeats.allowed = TRUE)
S <- data.frame(S)
colnames(S) <- c("of1", "of2", "of3")
S
## of1 of2 of3
## 1 0 0 0
## 2 0 0 1
## 3 0 1 0
## 4 0 1 1
## 5 1 0 0
## 6 1 0 1
## 7 1 1 0
## 8 1 1 1
Son ocho resultados experimentales que presenta el espacio muestral.
La variable aleatoria es \(x=0\) a ninguno se le ofrece empleo, \(x=1\) a uno de ellos se le ofrece empleo, \(x=2\) a dos de ellos se le ofrece empleo y \(x=3\) a los tres se les ofrece empleo.
Es una variable aleatoria discreta con valores en \(x\) de \(0\) a \(3\).
Sumando las ofertas
S <- S %>%
mutate(suma = of1 + of2 + of3)
S
## of1 of2 of3 suma
## 1 0 0 0 0
## 2 0 0 1 1
## 3 0 1 0 1
## 4 0 1 1 2
## 5 1 0 0 1
## 6 1 0 1 2
## 7 1 1 0 2
## 8 1 1 1 3
# El valor de n
n <- nrow(S)
Construir la tabla
tabla <- S %>%
group_by(suma) %>%
summarise(frec = n())
tabla <- data.frame(tabla)
colnames(tabla) <- c("x", "casos")
n <- sum(tabla$casos)
tabla <- tabla %>%
mutate(f.prob = round(casos / n, 4))
tabla <- tabla %>%
mutate(f.acum = cumsum(f.prob))
tabla
## x casos f.prob f.acum
## 1 0 1 0.125 0.125
## 2 1 3 0.375 0.500
## 3 2 3 0.375 0.875
## 4 3 1 0.125 1.000
gfrecuencias <- ggplot(data = tabla) +
geom_col(aes(x = x, y = f.prob), fill= 'lightblue')
gfrecuencias
gacumulada <- ggplot(data = tabla) +
geom_line(aes(x = x, y = f.acum), col='blue') +
geom_point(aes(x = x, y = f.acum), col='red')
gacumulada
¿Cuál es la probabilidad de que le ofrezcan trabajo a dos estudiantes? \(P(f(x = 2))\).
f.prob.discr(datos = tabla, discreta = 2, tipo = 0)
## f.prob
## 1 0.375
¿Cuál es la probabilidad de que le ofrezcan trabajo a dos o mas estudiantes? \[ P(x \ge 2) = P(2) + P(3) + P(4) \]
\[ P(x \ge 2) = 1 - F(x=1) \]
f.prob.discr(datos = tabla, discreta = 2, tipo = 4)
## f.acum
## 1 0.5
Un autobús para por cierta parada cada 15 minutos. ¿Cuál es la probabilidad de que una persona que llega en un momento dado tenga que esperar el autobús mas de cinco minutos?
\(P(x > 5\))
a <- 0
b <- 15
altura <- 1 / (b -a)
altura
## [1] 0.06666667
base <- 10
area <- base * altura
area
## [1] 0.6666667
paste("La probabilida de esperar mas de 5 minutos es de ", round(area * 100, 2))
## [1] "La probabilida de esperar mas de 5 minutos es de 66.67"
Calcular la probabilidad por medio de la función punif()
\[ P(x>5) \]
x = 5
prob1 <- punif(q = x, min = 0, max = 15)
prob1
## [1] 0.3333333
prob2 <- 1 - punif(q = x, min = 0, max = 15)
prob2
## [1] 0.6666667
prob3 <- punif(q = x, min = 0, max = 15, lower.tail = FALSE)
prob3
## [1] 0.6666667
paste("La probabilida de esperar mas de 5 minutos es de ", round(prob3 * 100, 2))
## [1] "La probabilida de esperar mas de 5 minutos es de 66.67"
\(P(x < 2\))
¿Cuál es la probabilidad de que una persona espere un tiempo menor que 2 minutos?
a <- 0
b <- 15
altura <- 1 / (b -a)
altura
## [1] 0.06666667
base <- 2
area <- base * altura
area
## [1] 0.1333333
paste("La probabilida de esperar mas de 5 minutos es de ", round(area * 100, 2))
## [1] "La probabilida de esperar mas de 5 minutos es de 13.33"
Calcular la probabilidad por medio de la función punif()
\[ P(x<=2) \]
x = 2
prob1 <- punif(q = x, min = 0, max = 15)
prob1
## [1] 0.1333333
prob2 <- 1 - punif(q = x, min = 0, max = 15)
prob2
## [1] 0.8666667
prob3 <- punif(q = x, min = 0, max = 15, lower.tail = FALSE)
prob3
## [1] 0.8666667
paste("La probabilida de esperar mas de 5 minutos es de ", round(prob1 * 100, 2))
## [1] "La probabilida de esperar mas de 5 minutos es de 13.33"
print("En el caso de los dados debido a que los valores que puede tomar la variable se limitan al valor de la suma de la caras de dos dados que son lanzados al mismo tiempo se puede decir que se trata de una variable discreta. En el ejercicio se muestran todos los valores que puede tomar x al sumarse las dos caras de los 2 dados lanzados. En las tablas tambien se muestra la probabilidad de que cada valor que toma x en el intervalo de 1 a 11 aprarezca y la frecuencia acumulada que nos sirve para saber la probabilidad de obtener un valor de x mayor o menor que un numero determinado.
En el ejemplo de los estudiantes y la oferta de trabajo se trata de igual forma de una variable discreta ya que el espacio muestral se limita a 8 resultados de igual forma podemos ver la probabilidad de que 1, 2 o los 3 estudiantes obtengan el puesto de trabajo, siendo mas probable que 1 o dos de los estudiantes obtengan el puesto de trabajo.
Finalmente, en el ejemplo de la parada del autobus se trata de un ejercicio que involucra varaiables continuas y de distribucion uniforme ya que la x puede tomar cualquier valor del intervalo de 0 a 15.")
## [1] "En el caso de los dados debido a que los valores que puede tomar la variable se limitan al valor de la suma de la caras de dos dados que son lanzados al mismo tiempo se puede decir que se trata de una variable discreta. En el ejercicio se muestran todos los valores que puede tomar x al sumarse las dos caras de los 2 dados lanzados. En las tablas tambien se muestra la probabilidad de que cada valor que toma x en el intervalo de 1 a 11 aprarezca y la frecuencia acumulada que nos sirve para saber la probabilidad de obtener un valor de x mayor o menor que un numero determinado.\n En el ejemplo de los estudiantes y la oferta de trabajo se trata de igual forma de una variable discreta ya que el espacio muestral se limita a 8 resultados de igual forma podemos ver la probabilidad de que 1, 2 o los 3 estudiantes obtengan el puesto de trabajo, siendo mas probable que 1 o dos de los estudiantes obtengan el puesto de trabajo.\n Finalmente, en el ejemplo de la parada del autobus se trata de un ejercicio que involucra varaiables continuas y de distribucion uniforme ya que la x puede tomar cualquier valor del intervalo de 0 a 15."