library(FrF2)
## Warning: package 'FrF2' was built under R version 4.1.2
## Loading required package: DoE.base
## Loading required package: grid
## Loading required package: conf.design
## Registered S3 method overwritten by 'DoE.base':
##   method           from       
##   factorize.factor conf.design
## 
## Attaching package: 'DoE.base'
## The following objects are masked from 'package:stats':
## 
##     aov, lm
## The following object is masked from 'package:graphics':
## 
##     plot.design
## The following object is masked from 'package:base':
## 
##     lengths
library(DoE.base)
library(GAD)
## Loading required package: matrixStats
## Loading required package: R.methodsS3
## R.methodsS3 v1.8.1 (2020-08-26 16:20:06 UTC) successfully loaded. See ?R.methodsS3 for help.

8.2)

des.res4<-FrF2(nfactors=4,resolution=4,randomize=FALSE)
des.res4
##    A  B  C  D
## 1 -1 -1 -1 -1
## 2  1 -1 -1  1
## 3 -1  1 -1  1
## 4  1  1 -1 -1
## 5 -1 -1  1  1
## 6  1 -1  1 -1
## 7 -1  1  1 -1
## 8  1  1  1  1
## class=design, type= FrF2
response<-c(7.037,16.867,13.876,17.273,11.846,4.368,9.36,15.653)
des.resp4<-add.response(des.res4,response)
des.resp4
##    A  B  C  D response
## 1 -1 -1 -1 -1    7.037
## 2  1 -1 -1  1   16.867
## 3 -1  1 -1  1   13.876
## 4  1  1 -1 -1   17.273
## 5 -1 -1  1  1   11.846
## 6  1 -1  1 -1    4.368
## 7 -1  1  1 -1    9.360
## 8  1  1  1  1   15.653
## class=design, type= FrF2
aliasprint(des.resp4)
## $legend
## [1] A=A B=B C=C D=D
## 
## $main
## character(0)
## 
## $fi2
## [1] AB=CD AC=BD AD=BC
summary(des.resp4)
## Call:
## FrF2(nfactors = 4, resolution = 4, randomize = FALSE)
## 
## Experimental design of type  FrF2 
## 8  runs
## 
## Factor settings (scale ends):
##    A  B  C  D
## 1 -1 -1 -1 -1
## 2  1  1  1  1
## 
## Responses:
## [1] response
## 
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D
## 
## $generators
## [1] D=ABC
## 
## 
## Alias structure:
## $fi2
## [1] AB=CD AC=BD AD=BC
## 
## 
## The design itself:
##    A  B  C  D response
## 1 -1 -1 -1 -1    7.037
## 2  1 -1 -1  1   16.867
## 3 -1  1 -1  1   13.876
## 4  1  1 -1 -1   17.273
## 5 -1 -1  1  1   11.846
## 6  1 -1  1 -1    4.368
## 7 -1  1  1 -1    9.360
## 8  1  1  1  1   15.653
## class=design, type= FrF2
DanielPlot(des.resp4)

Here we can see that the resolution 4 is used and so the main effects are not aliased with other maineffects and also not alliased with two factor interactions

From the plot we can say that no factors are significant

8.24

des.res5<-FrF2(nruns = 16, nfactors=5,resolution=5,randomize=FALSE,blocks = 2)
## Warning in FrF2(nruns = 16, nfactors = 5, resolution = 5, randomize = FALSE, :
## resolution is ignored, if nruns is given.
des.res5
##   run.no run.no.std.rp Blocks  A  B  C  D  E
## 1      1         1.1.1      1 -1 -1 -1 -1 -1
## 2      2         3.1.2      1 -1 -1  1 -1  1
## 3      3         6.1.3      1 -1  1 -1  1  1
## 4      4         8.1.4      1 -1  1  1  1 -1
## 5      5        10.1.5      1  1 -1 -1  1  1
## 6      6        12.1.6      1  1 -1  1  1 -1
## 7      7        13.1.7      1  1  1 -1 -1 -1
## 8      8        15.1.8      1  1  1  1 -1  1
##    run.no run.no.std.rp Blocks  A  B  C  D  E
## 9       9         2.2.1      2 -1 -1 -1  1 -1
## 10     10         4.2.2      2 -1 -1  1  1  1
## 11     11         5.2.3      2 -1  1 -1 -1  1
## 12     12         7.2.4      2 -1  1  1 -1 -1
## 13     13         9.2.5      2  1 -1 -1 -1  1
## 14     14        11.2.6      2  1 -1  1 -1 -1
## 15     15        14.2.7      2  1  1 -1  1 -1
## 16     16        16.2.8      2  1  1  1  1  1
## class=design, type= FrF2.blocked 
## NOTE: columns run.no and run.no.std.rp  are annotation, 
##  not part of the data frame
aliasprint(des.res5)
## $legend
## [1] A=A B=B C=C D=D E=E
## 
## $main
## character(0)
## 
## $fi2
## [1] AB=CE AC=BE AE=BC
summary(des.res5)
## Call:
## FrF2(nruns = 16, nfactors = 5, resolution = 5, randomize = FALSE, 
##     blocks = 2)
## 
## Experimental design of type  FrF2.blocked 
## 16  runs
## blocked design with  2  blocks of size  8 
## 
## Factor settings (scale ends):
##    A  B  C  D  E
## 1 -1 -1 -1 -1 -1
## 2  1  1  1  1  1
## 
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D E=E
## 
## $`generators for design itself`
## [1] E=ABC
## 
## $`block generators`
## [1] ABD
## 
## 
## Alias structure:
## $fi2
## [1] AB=CE AC=BE AE=BC
## 
## Aliased with block main effects:
## [1] none
## 
## The design itself:
##   run.no run.no.std.rp Blocks  A  B  C  D  E
## 1      1         1.1.1      1 -1 -1 -1 -1 -1
## 2      2         3.1.2      1 -1 -1  1 -1  1
## 3      3         6.1.3      1 -1  1 -1  1  1
## 4      4         8.1.4      1 -1  1  1  1 -1
## 5      5        10.1.5      1  1 -1 -1  1  1
## 6      6        12.1.6      1  1 -1  1  1 -1
## 7      7        13.1.7      1  1  1 -1 -1 -1
## 8      8        15.1.8      1  1  1  1 -1  1
##    run.no run.no.std.rp Blocks  A  B  C  D  E
## 9       9         2.2.1      2 -1 -1 -1  1 -1
## 10     10         4.2.2      2 -1 -1  1  1  1
## 11     11         5.2.3      2 -1  1 -1 -1  1
## 12     12         7.2.4      2 -1  1  1 -1 -1
## 13     13         9.2.5      2  1 -1 -1 -1  1
## 14     14        11.2.6      2  1 -1  1 -1 -1
## 15     15        14.2.7      2  1  1 -1  1 -1
## 16     16        16.2.8      2  1  1  1  1  1
## class=design, type= FrF2.blocked 
## NOTE: columns run.no and run.no.std.rp  are annotation, 
##  not part of the data frame

Alias Relationships for 2^(k-p) Fractional Factorial Designs with k less than or equal to 15 and n is less than or equal to 64

Here all three factor interactions are confounded with two factor interaction.

Hence no main effect or two factor interaction can be confounded with the block

#8.25

From the question we can see that it has 32 runs and it is a quarter fraction and hence we use resoludion 4 design

des.res7<-FrF2(nruns = 32, nfactors=7,resolution=4,randomize=FALSE,blocks = 4)
## Warning in FrF2(nruns = 32, nfactors = 7, resolution = 4, randomize = FALSE, :
## resolution is ignored, if nruns is given.
des.res7
##   run.no run.no.std.rp Blocks  A  B  C  D  E  F  G
## 1      1         1.1.1      1 -1 -1 -1 -1 -1 -1 -1
## 2      2         7.1.2      1 -1 -1  1  1 -1  1  1
## 3      3        10.1.3      1 -1  1 -1 -1  1  1  1
## 4      4        16.1.4      1 -1  1  1  1  1 -1 -1
## 5      5        20.1.5      1  1 -1 -1  1  1  1 -1
## 6      6        22.1.6      1  1 -1  1 -1  1 -1  1
## 7      7        27.1.7      1  1  1 -1  1 -1 -1  1
## 8      8        29.1.8      1  1  1  1 -1 -1  1 -1
##    run.no run.no.std.rp Blocks  A  B  C  D  E  F  G
## 9       9         2.2.1      2 -1 -1 -1 -1  1 -1 -1
## 10     10         8.2.2      2 -1 -1  1  1  1  1  1
## 11     11         9.2.3      2 -1  1 -1 -1 -1  1  1
## 12     12        15.2.4      2 -1  1  1  1 -1 -1 -1
## 13     13        19.2.5      2  1 -1 -1  1 -1  1 -1
## 14     14        21.2.6      2  1 -1  1 -1 -1 -1  1
## 15     15        28.2.7      2  1  1 -1  1  1 -1  1
## 16     16        30.2.8      2  1  1  1 -1  1  1 -1
##    run.no run.no.std.rp Blocks  A  B  C  D  E  F  G
## 17     17         3.3.1      3 -1 -1 -1  1 -1 -1  1
## 18     18         5.3.2      3 -1 -1  1 -1 -1  1 -1
## 19     19        12.3.3      3 -1  1 -1  1  1  1 -1
## 20     20        14.3.4      3 -1  1  1 -1  1 -1  1
## 21     21        18.3.5      3  1 -1 -1 -1  1  1  1
## 22     22        24.3.6      3  1 -1  1  1  1 -1 -1
## 23     23        25.3.7      3  1  1 -1 -1 -1 -1 -1
## 24     24        31.3.8      3  1  1  1  1 -1  1  1
##    run.no run.no.std.rp Blocks  A  B  C  D  E  F  G
## 25     25         4.4.1      4 -1 -1 -1  1  1 -1  1
## 26     26         6.4.2      4 -1 -1  1 -1  1  1 -1
## 27     27        11.4.3      4 -1  1 -1  1 -1  1 -1
## 28     28        13.4.4      4 -1  1  1 -1 -1 -1  1
## 29     29        17.4.5      4  1 -1 -1 -1 -1  1  1
## 30     30        23.4.6      4  1 -1  1  1 -1 -1 -1
## 31     31        26.4.7      4  1  1 -1 -1  1 -1 -1
## 32     32        32.4.8      4  1  1  1  1  1  1  1
## class=design, type= FrF2.blocked 
## NOTE: columns run.no and run.no.std.rp  are annotation, 
##  not part of the data frame
aliasprint(des.res7)
## $legend
## [1] A=A B=B C=C D=D E=E F=F G=G
## 
## $main
## character(0)
## 
## $fi2
## [1] AB=CF=DG AC=BF    AD=BG    AF=BC    AG=BD    CD=FG    CG=DF

Hence no main effect or two factor effects can be confounded with blocks

8.28

library(FrF2)
library(DoE.base)
library(GAD)
des.res6<-FrF2(nfactors=6,resolution=4,randomize=FALSE)

A)The design Generators can be seen as E= ABC & F= BCD

aliasprint(des.res6) # Here we can see the alias relationship
## $legend
## [1] A=A B=B C=C D=D E=E F=F
## 
## $main
## character(0)
## 
## $fi2
## [1] AB=CE=DF AC=BE    AD=BF    AE=BC    AF=BD    CD=EF    CF=DE

B)Here we can see the alias relationship

summary(des.res6)
## Call:
## FrF2(nfactors = 6, resolution = 4, randomize = FALSE)
## 
## Experimental design of type  FrF2 
## 16  runs
## 
## Factor settings (scale ends):
##    A  B  C  D  E  F
## 1 -1 -1 -1 -1 -1 -1
## 2  1  1  1  1  1  1
## 
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D E=E F=F
## 
## $generators
## [1] E=ABC F=ABD
## 
## 
## Alias structure:
## $fi2
## [1] AB=CE=DF AC=BE    AD=BF    AE=BC    AF=BD    CD=EF    CF=DE   
## 
## 
## The design itself:
##     A  B  C  D  E  F
## 1  -1 -1 -1 -1 -1 -1
## 2   1 -1 -1 -1  1  1
## 3  -1  1 -1 -1  1  1
## 4   1  1 -1 -1 -1 -1
## 5  -1 -1  1 -1  1 -1
## 6   1 -1  1 -1 -1  1
## 7  -1  1  1 -1 -1  1
## 8   1  1  1 -1  1 -1
## 9  -1 -1 -1  1 -1  1
## 10  1 -1 -1  1  1 -1
## 11 -1  1 -1  1  1 -1
## 12  1  1 -1  1 -1  1
## 13 -1 -1  1  1  1  1
## 14  1 -1  1  1 -1 -1
## 15 -1  1  1  1 -1 -1
## 16  1  1  1  1  1  1
## class=design, type= FrF2
Lamtemp<-c("-1","1","-1","1","-1","1","-1","1","-1","1","-1","1","-1","1","-1","1") 
Lamtemp1<-as.fixed(Lamtemp)
Lamtime<-c(rep(c("-1","-1","1","1"),4))
Lamtime1<-as.fixed(Lamtime)
LamPressure<-c(rep(c("-1","-1","-1","-1","1","1","1","1"),2))
LamPressure1<-as.fixed(LamPressure)
Firetemp<-c("-1","-1","-1","-1","-1","-1","-1","-1","1","1","1","1","1","1","1","1")
Firetemp1<-as.fixed(Firetemp)
Firetime<-c(rep(c("-1","1","1","-1","1","-1","-1","1"),2))
Firetime1<-as.fixed(Firetime)
Firedewpoint<-c(rep(c("-1","1","-1","1","1","-1","1","-1"),2))
Firedewpoint1<-as.fixed(Firedewpoint)
Response<-c(0.0167,0.0062,0.0041,0.0073,0.0047,0.0219,0.0121,0.0255,0.0032,0.0078,0.0043,0.0186,0.011,0.0065,0.0155,0.0093,0.0128,0.0066,0.0043,0.0081,0.0047,0.0258,0.009,0.025,0.0023,0.0158,0.0027,0.0137,0.0086,0.0109,0.0158,0.0124,0.0149,0.0044,0.0042,0.0039,0.004,0.0147,0.0092,0.0226,0.0077,0.006,0.0028,0.0158,0.0101,0.0126,0.0145,0.011,0.0185,0.002,0.005,0.003,0.0089,0.0296,0.0086,0.0169,0.0069,0.0045,0.0028,0.0159,0.0158,0.0071,0.0145,0.0133)
Total<-c(629,192,176,223,223,920,389,900,201,341,126,640,455,371,603,460)
Mean<-c(157.25,48,44,55.75,55.75,230,97.25,225,50.25,85.25,31.5,160,113.75,92.75,150.75,115)
Stddeviation<-c(24.418,20.976,4.083,25.025,22.41,63.639,16.029,39.42,26.725,50.341,7.681,20.083,31.12,29.51,6.75,17.45
)
dat2<-data.frame(Lamtemp1,Lamtime1,LamPressure1,Firetemp1,Firetime1,Firedewpoint1,Response,Total,Mean,Stddeviation)
model<-aov(Response~Lamtemp1*Lamtime1*LamPressure1*Firetemp1*Firetime1*Firedewpoint1, data = dat2)
summary(model)
##                                 Df    Sum Sq   Mean Sq F value   Pr(>F)    
## Lamtemp1                         1 0.0002422 0.0002422  27.793 3.17e-06 ***
## Lamtime1                         1 0.0000053 0.0000053   0.614  0.43725    
## LamPressure1                     1 0.0005023 0.0005023  57.644 9.14e-10 ***
## Firetemp1                        1 0.0000323 0.0000323   3.712  0.05995 .  
## Firetime1                        1 0.0001901 0.0001901  21.815 2.45e-05 ***
## Firedewpoint1                    1 0.0000803 0.0000803   9.218  0.00387 ** 
## Lamtemp1:Lamtime1                1 0.0000587 0.0000587   6.738  0.01249 *  
## Lamtime1:LamPressure1            1 0.0000527 0.0000527   6.053  0.01754 *  
## Lamtemp1:Firetemp1               1 0.0000239 0.0000239   2.741  0.10431    
## Lamtime1:Firetemp1               1 0.0000849 0.0000849   9.739  0.00305 ** 
## LamPressure1:Firetemp1           1 0.0000622 0.0000622   7.139  0.01027 *  
## Firetemp1:Firetime1              1 0.0000088 0.0000088   1.007  0.32062    
## Firetemp1:Firedewpoint1          1 0.0009602 0.0009602 110.192 5.05e-14 ***
## Lamtemp1:Lamtime1:Firetemp1      1 0.0000000 0.0000000   0.005  0.94291    
## Lamtime1:LamPressure1:Firetemp1  1 0.0000481 0.0000481   5.523  0.02293 *  
## Residuals                       48 0.0004183 0.0000087                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

C)From the aov table the process variable that affect camber are Lamination Temperature, Lamination Pressure, Firing cycle time,Firing Dew point temp

dat3<-data.frame(Lamtemp1,Lamtime1,LamPressure1,Firetemp1,Firetime1,Firedewpoint1,Stddeviation)
model1<-aov(Stddeviation~Lamtemp1*Lamtime1*LamPressure1*Firetemp1*Firetime1*Firedewpoint1, data = dat3)
DanielPlot(model1)

MEPlot(model1,show.alias=TRUE)

D)From the above plot we can say that the variables which affect variability in camber measurements are Lamination temperature and Lamination Time

E)To reduce the camber as much as possible the significant factors should be taken care of i.e Lamination Temperature, Lamination Pressure, Firing cycle time,Firing Dew point temp

8.40)

A)The experimentinvestigated 4 factors i.e. a,b,c,d

B)The resolution of the design is 4

C)The main effect

library(FrF2)
des.res8.4<-FrF2(nfactors=4,resolution=4,randomize=FALSE)
des.res8.4
##    A  B  C  D
## 1 -1 -1 -1 -1
## 2  1 -1 -1  1
## 3 -1  1 -1  1
## 4  1  1 -1 -1
## 5 -1 -1  1  1
## 6  1 -1  1 -1
## 7 -1  1  1 -1
## 8  1  1  1  1
## class=design, type= FrF2
aliasprint(des.res8.4)
## $legend
## [1] A=A B=B C=C D=D
## 
## $main
## character(0)
## 
## $fi2
## [1] AB=CD AC=BD AD=BC
response<- c(8,10,12,7,13,6,5,11)
des.res8.41<-add.response(des.res8.4,response)
summary(des.res8.41)
## Call:
## FrF2(nfactors = 4, resolution = 4, randomize = FALSE)
## 
## Experimental design of type  FrF2 
## 8  runs
## 
## Factor settings (scale ends):
##    A  B  C  D
## 1 -1 -1 -1 -1
## 2  1  1  1  1
## 
## Responses:
## [1] response
## 
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D
## 
## $generators
## [1] D=ABC
## 
## 
## Alias structure:
## $fi2
## [1] AB=CD AC=BD AD=BC
## 
## 
## The design itself:
##    A  B  C  D response
## 1 -1 -1 -1 -1        8
## 2  1 -1 -1  1       10
## 3 -1  1 -1  1       12
## 4  1  1 -1 -1        7
## 5 -1 -1  1  1       13
## 6  1 -1  1 -1        6
## 7 -1  1  1 -1        5
## 8  1  1  1  1       11
## class=design, type= FrF2

D)From above table we can see the generators

C)

Effect A= 1/4*(-8+10-12+7-13+6-5+11)=-1

Effect B= 1/4*(8-10+12+7-13-6+5+11)=-0.5

Effect c= 1/4*(-8-10-12-7+13+6+5+11)=-0.5

Effect D= 1/4*(-8+10+12-7+13-6-5+11)=5

8.48)

A) The design generator for column D is -ABC

B) The design generator for column E is BC

C) By referring to the table 8.14 we can say that the resolution for the combined design is 4

8.60)

library(FrF2)
des.res860<-FrF2(nfactors=7,resolution=3,randomize=FALSE)
des.res860
##    A  B  C  D  E  F  G
## 1 -1 -1 -1  1  1  1 -1
## 2  1 -1 -1 -1 -1  1  1
## 3 -1  1 -1 -1  1 -1  1
## 4  1  1 -1  1 -1 -1 -1
## 5 -1 -1  1  1 -1 -1  1
## 6  1 -1  1 -1  1 -1 -1
## 7 -1  1  1 -1 -1  1 -1
## 8  1  1  1  1  1  1  1
## class=design, type= FrF2
des.res861<-fold.design(des.res860,column=1)
des.res861
##     A  B  C     fold  D  E  F  G
## 1  -1 -1 -1 original  1  1  1 -1
## 2   1 -1 -1 original -1 -1  1  1
## 3  -1  1 -1 original -1  1 -1  1
## 4   1  1 -1 original  1 -1 -1 -1
## 5  -1 -1  1 original  1 -1 -1  1
## 6   1 -1  1 original -1  1 -1 -1
## 7  -1  1  1 original -1 -1  1 -1
## 8   1  1  1 original  1  1  1  1
## 9   1 -1 -1   mirror  1  1  1 -1
## 10 -1 -1 -1   mirror -1 -1  1  1
## 11  1  1 -1   mirror -1  1 -1  1
## 12 -1  1 -1   mirror  1 -1 -1 -1
## 13  1 -1  1   mirror  1 -1 -1  1
## 14 -1 -1  1   mirror -1  1 -1 -1
## 15  1  1  1   mirror -1 -1  1 -1
## 16 -1  1  1   mirror  1  1  1  1
## class=design, type= FrF2.folded
aliasprint(des.res861)
## $legend
## [1] A=A    B=B    C=C    D=fold E=D    F=E    G=F    H=G   
## 
## $main
## [1] B=CG=FH C=BG=EH E=CH=FG F=BH=EG G=BC=EF H=BF=CE
## 
## $fi2
## [1] AB=-DE         AC=-DF         AD=-BE=-CF=-GH AE=-BD         AF=-CD        
## [6] AG=-DH         AH=-DG
summary(des.res861)
## Multi-step-call:
## [[1]]
## FrF2(nfactors = 7, resolution = 3, randomize = FALSE)
## 
## $fold
## [1] 1
## 
## 
## Experimental design of type  FrF2.folded 
## 16  runs
## 
## Factor settings (scale ends):
##    A  B  C     fold  D  E  F  G
## 1 -1 -1 -1 original -1 -1 -1 -1
## 2  1  1  1   mirror  1  1  1  1
## 
## Design generating information:
## $legend
## [1] A=A    B=B    C=C    D=fold E=D    F=E    G=F    H=G   
## 
## 
## Alias structure:
## $main
## [1] B=CG=FH C=BG=EH E=CH=FG F=BH=EG G=BC=EF H=BF=CE
## 
## $fi2
## [1] AB=-DE         AC=-DF         AD=-BE=-CF=-GH AE=-BD         AF=-CD        
## [6] AG=-DH         AH=-DG        
## 
## 
## The design itself:
##     A  B  C     fold  D  E  F  G
## 1  -1 -1 -1 original  1  1  1 -1
## 2   1 -1 -1 original -1 -1  1  1
## 3  -1  1 -1 original -1  1 -1  1
## 4   1  1 -1 original  1 -1 -1 -1
## 5  -1 -1  1 original  1 -1 -1  1
## 6   1 -1  1 original -1  1 -1 -1
## 7  -1  1  1 original -1 -1  1 -1
## 8   1  1  1 original  1  1  1  1
## 9   1 -1 -1   mirror  1  1  1 -1
## 10 -1 -1 -1   mirror -1 -1  1  1
## 11  1  1 -1   mirror -1  1 -1  1
## 12 -1  1 -1   mirror  1 -1 -1 -1
## 13  1 -1  1   mirror  1 -1 -1  1
## 14 -1 -1  1   mirror -1  1 -1 -1
## 15  1  1  1   mirror -1 -1  1 -1
## 16 -1  1  1   mirror  1  1  1  1
## class=design, type= FrF2.folded

Here from above table we can see the alias relationship for the folded design