library(FrF2)
design <- FrF2(nfactors=4,resolution=3,randomize=FALSE)
design
## A B C D
## 1 -1 -1 -1 -1
## 2 1 -1 -1 1
## 3 -1 1 -1 1
## 4 1 1 -1 -1
## 5 -1 -1 1 1
## 6 1 -1 1 -1
## 7 -1 1 1 -1
## 8 1 1 1 1
## class=design, type= FrF2
aliasprint(design)
## $legend
## [1] A=A B=B C=C D=D
##
## $main
## character(0)
##
## $fi2
## [1] AB=CD AC=BD AD=BC
response<-c(7.037, 16.867, 13.876, 17.273, 11.846, 4.368, 9.36, 15.653)
design.resp <- add.response(design,response)
summary(design.resp)
## Call:
## FrF2(nfactors = 4, resolution = 3, randomize = FALSE)
##
## Experimental design of type FrF2
## 8 runs
##
## Factor settings (scale ends):
## A B C D
## 1 -1 -1 -1 -1
## 2 1 1 1 1
##
## Responses:
## [1] response
##
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D
##
## $generators
## [1] D=ABC
##
##
## Alias structure:
## $fi2
## [1] AB=CD AC=BD AD=BC
##
##
## The design itself:
## A B C D response
## 1 -1 -1 -1 -1 7.037
## 2 1 -1 -1 1 16.867
## 3 -1 1 -1 1 13.876
## 4 1 1 -1 -1 17.273
## 5 -1 -1 1 1 11.846
## 6 1 -1 1 -1 4.368
## 7 -1 1 1 -1 9.360
## 8 1 1 1 1 15.653
## class=design, type= FrF2
DanielPlot(design.resp,half=TRUE)
des.res4<-FrF2(nfactors=5,resolution=4,randomize=FALSE)
des.res4
## A B C D E
## 1 -1 -1 -1 -1 1
## 2 1 -1 -1 -1 -1
## 3 -1 1 -1 -1 -1
## 4 1 1 -1 -1 1
## 5 -1 -1 1 -1 -1
## 6 1 -1 1 -1 1
## 7 -1 1 1 -1 1
## 8 1 1 1 -1 -1
## 9 -1 -1 -1 1 -1
## 10 1 -1 -1 1 1
## 11 -1 1 -1 1 1
## 12 1 1 -1 1 -1
## 13 -1 -1 1 1 1
## 14 1 -1 1 1 -1
## 15 -1 1 1 1 -1
## 16 1 1 1 1 1
## class=design, type= FrF2
aliasprint(des.res4)
## $legend
## [1] A=A B=B C=C D=D E=E
##
## [[2]]
## [1] no aliasing among main effects and 2fis
AB <- c("+","-","-","+","+","-","-","+","+","-","-","+","+","-","-","+")
Block <- c(1,2,2,1,1,2,2,1,1,2,2,1,1,2,2,1)
Data <- data.frame(des.res4,AB,Block)
Data
## A B C D E AB Block
## 1 -1 -1 -1 -1 1 + 1
## 2 1 -1 -1 -1 -1 - 2
## 3 -1 1 -1 -1 -1 - 2
## 4 1 1 -1 -1 1 + 1
## 5 -1 -1 1 -1 -1 + 1
## 6 1 -1 1 -1 1 - 2
## 7 -1 1 1 -1 1 - 2
## 8 1 1 1 -1 -1 + 1
## 9 -1 -1 -1 1 -1 + 1
## 10 1 -1 -1 1 1 - 2
## 11 -1 1 -1 1 1 - 2
## 12 1 1 -1 1 -1 + 1
## 13 -1 -1 1 1 1 + 1
## 14 1 -1 1 1 -1 - 2
## 15 -1 1 1 1 -1 - 2
## 16 1 1 1 1 1 + 1
library(FrF2)
design <- FrF2(nruns = 32,nfactors=7,blocks = 4,randomize=TRUE)
design
## run.no run.no.std.rp Blocks A B C D E F G
## 1 1 27.1.7 1 1 1 -1 1 -1 -1 1
## 2 2 29.1.8 1 1 1 1 -1 -1 1 -1
## 3 3 7.1.2 1 -1 -1 1 1 -1 1 1
## 4 4 20.1.5 1 1 -1 -1 1 1 1 -1
## 5 5 1.1.1 1 -1 -1 -1 -1 -1 -1 -1
## 6 6 22.1.6 1 1 -1 1 -1 1 -1 1
## 7 7 16.1.4 1 -1 1 1 1 1 -1 -1
## 8 8 10.1.3 1 -1 1 -1 -1 1 1 1
## run.no run.no.std.rp Blocks A B C D E F G
## 9 9 21.2.6 2 1 -1 1 -1 -1 -1 1
## 10 10 2.2.1 2 -1 -1 -1 -1 1 -1 -1
## 11 11 9.2.3 2 -1 1 -1 -1 -1 1 1
## 12 12 15.2.4 2 -1 1 1 1 -1 -1 -1
## 13 13 30.2.8 2 1 1 1 -1 1 1 -1
## 14 14 28.2.7 2 1 1 -1 1 1 -1 1
## 15 15 8.2.2 2 -1 -1 1 1 1 1 1
## 16 16 19.2.5 2 1 -1 -1 1 -1 1 -1
## run.no run.no.std.rp Blocks A B C D E F G
## 17 17 24.3.6 3 1 -1 1 1 1 -1 -1
## 18 18 31.3.8 3 1 1 1 1 -1 1 1
## 19 19 25.3.7 3 1 1 -1 -1 -1 -1 -1
## 20 20 5.3.2 3 -1 -1 1 -1 -1 1 -1
## 21 21 14.3.4 3 -1 1 1 -1 1 -1 1
## 22 22 3.3.1 3 -1 -1 -1 1 -1 -1 1
## 23 23 12.3.3 3 -1 1 -1 1 1 1 -1
## 24 24 18.3.5 3 1 -1 -1 -1 1 1 1
## run.no run.no.std.rp Blocks A B C D E F G
## 25 25 6.4.2 4 -1 -1 1 -1 1 1 -1
## 26 26 11.4.3 4 -1 1 -1 1 -1 1 -1
## 27 27 17.4.5 4 1 -1 -1 -1 -1 1 1
## 28 28 23.4.6 4 1 -1 1 1 -1 -1 -1
## 29 29 26.4.7 4 1 1 -1 -1 1 -1 -1
## 30 30 4.4.1 4 -1 -1 -1 1 1 -1 1
## 31 31 13.4.4 4 -1 1 1 -1 -1 -1 1
## 32 32 32.4.8 4 1 1 1 1 1 1 1
## class=design, type= FrF2.blocked
## NOTE: columns run.no and run.no.std.rp are annotation,
## not part of the data frame
library(FrF2)
des.res4<-FrF2(nfactors=6,resolution=4,randomize=FALSE)
des.res4$F <- c(-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1)
des.res4
## A B C D E F
## 1 -1 -1 -1 -1 -1 -1
## 2 1 -1 -1 -1 1 1
## 3 -1 1 -1 -1 1 -1
## 4 1 1 -1 -1 -1 1
## 5 -1 -1 1 -1 1 1
## 6 1 -1 1 -1 -1 -1
## 7 -1 1 1 -1 -1 1
## 8 1 1 1 -1 1 -1
## 9 -1 -1 -1 1 -1 1
## 10 1 -1 -1 1 1 -1
## 11 -1 1 -1 1 1 1
## 12 1 1 -1 1 -1 -1
## 13 -1 -1 1 1 1 -1
## 14 1 -1 1 1 -1 1
## 15 -1 1 1 1 -1 -1
## 16 1 1 1 1 1 1
## class=design, type= FrF2
aliasprint(des.res4)
## $legend
## [1] A=A B=B C=C D=D E=E F=F
##
## $main
## character(0)
##
## $fi2
## [1] AB=CE=DF AC=BE AD=BF AE=BC AF=BD CD=EF CF=DE
A <- c(-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1)
B <- c(-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1)
C <- c(-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1)
D <- c(-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1)
E <- c(-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1)
F <- c(-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1)
A <- as.factor(A)
B <- as.factor(B)
C <- as.factor(C)
D <- as.factor(D)
E <- as.factor(E)
F <- as.factor(F)
response<-c(0.0167,0.0062,0.0041,0.0073,0.0047,0.0219,0.0121,0.0255,0.0032,0.0078,0.0043,0.0186,0.0110,0.0065,0.0155,0.0093,0.0128,0.0066,0.0043,0.0081,0.0047,0.0258,0.0090,0.0250,0.0023,0.0158,0.0027,0.0137,0.0086,0.0109,0.0158,0.0124,0.0149,0.0044,0.0042,0.0039,0.0040,0.0147,0.0092,0.0226,0.0077,0.0060,0.0028,0.0158,0.0101,0.0126,0.0145,0.0110,0.0185,0.0020,0.0050,0.0030,0.0089,0.0296,0.0086,0.0169,0.0069,0.0045,0.0028,0.0159,0.0158,0.0071,0.0145,0.0133)
Data <- data.frame(A,B,C,D,E,F,response)
Model <- aov(response~A*B*C*D*E*F,data = Data)
summary(Model)
## Df Sum Sq Mean Sq F value Pr(>F)
## A 1 0.0002422 0.0002422 27.793 3.17e-06 ***
## B 1 0.0000053 0.0000053 0.614 0.43725
## C 1 0.0005023 0.0005023 57.644 9.14e-10 ***
## D 1 0.0000323 0.0000323 3.712 0.05995 .
## E 1 0.0001901 0.0001901 21.815 2.45e-05 ***
## F 1 0.0009602 0.0009602 110.192 5.05e-14 ***
## A:B 1 0.0000587 0.0000587 6.738 0.01249 *
## A:C 1 0.0000803 0.0000803 9.218 0.00387 **
## B:C 1 0.0000527 0.0000527 6.053 0.01754 *
## A:D 1 0.0000239 0.0000239 2.741 0.10431
## B:D 1 0.0000849 0.0000849 9.739 0.00305 **
## C:D 1 0.0000622 0.0000622 7.139 0.01027 *
## D:E 1 0.0000088 0.0000088 1.007 0.32062
## A:B:D 1 0.0000000 0.0000000 0.005 0.94291
## B:C:D 1 0.0000481 0.0000481 5.523 0.02293 *
## Residuals 48 0.0004183 0.0000087
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
A <- c(-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1)
B <- c(-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1)
C <- c(-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1)
D <- c(-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1)
E <- c(-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1)
F <- c(-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1)
A <- as.factor(A)
B <- as.factor(B)
C <- as.factor(C)
D <- as.factor(D)
E <- as.factor(E)
F <- as.factor(F)
SD <- c(24.418,20.976,4.083,25.025,22.41,63.639,16.029,39.42,26.725,50.341,7.681,20.083,31.12,29.51,6.75,17.45)
Data2 <- data.frame(A,B,C,D,E,F,SD)
Model2 <- lm(SD~A*B*C*D*E*F,data = Data2)
DanielPlot(Model2)
Model3 <- aov(SD~A+B,data = Data2)
summary(Model3)
## Df Sum Sq Mean Sq F value Pr(>F)
## A 1 1012 1012 8.505 0.01202 *
## B 1 1099 1099 9.241 0.00948 **
## Residuals 13 1546 119
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Model2 <- lm(response~A*B*C*D*E*F,data = Data)
coef(Model2)
## (Intercept) A1 B1 C1
## 0.015725000 0.001009375 -0.007137500 0.001784375
## D1 E1 F1 A1:B1
## -0.002953125 -0.004187500 -0.007746875 0.003725000
## A1:C1 B1:C1 A1:D1 B1:D1
## 0.004481250 0.007100000 -0.002550000 0.007968750
## C1:D1 A1:E1 B1:E1 C1:E1
## -0.000475000 NA NA NA
## D1:E1 A1:F1 B1:F1 C1:F1
## 0.001481250 NA NA NA
## D1:F1 E1:F1 A1:B1:C1 A1:B1:D1
## NA NA NA 0.000212500
## A1:C1:D1 B1:C1:D1 A1:B1:E1 A1:C1:E1
## NA -0.006937500 NA NA
## B1:C1:E1 A1:D1:E1 B1:D1:E1 C1:D1:E1
## NA NA NA NA
## A1:B1:F1 A1:C1:F1 B1:C1:F1 A1:D1:F1
## NA NA NA NA
## B1:D1:F1 C1:D1:F1 A1:E1:F1 B1:E1:F1
## NA NA NA NA
## C1:E1:F1 D1:E1:F1 A1:B1:C1:D1 A1:B1:C1:E1
## NA NA NA NA
## A1:B1:D1:E1 A1:C1:D1:E1 B1:C1:D1:E1 A1:B1:C1:F1
## NA NA NA NA
## A1:B1:D1:F1 A1:C1:D1:F1 B1:C1:D1:F1 A1:B1:E1:F1
## NA NA NA NA
## A1:C1:E1:F1 B1:C1:E1:F1 A1:D1:E1:F1 B1:D1:E1:F1
## NA NA NA NA
## C1:D1:E1:F1 A1:B1:C1:D1:E1 A1:B1:C1:D1:F1 A1:B1:C1:E1:F1
## NA NA NA NA
## A1:B1:D1:E1:F1 A1:C1:D1:E1:F1 B1:C1:D1:E1:F1 A1:B1:C1:D1:E1:F1
## NA NA NA NA
summary(Model2)
##
## Call:
## lm.default(formula = response ~ A * B * C * D * E * F, data = Data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.008300 -0.001350 -0.000350 0.001744 0.007275
##
## Coefficients: (48 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0157250 0.0014760 10.654 3.06e-14 ***
## A1 0.0010094 0.0016502 0.612 0.543644
## B1 -0.0071375 0.0018077 -3.948 0.000257 ***
## C1 0.0017844 0.0016502 1.081 0.284963
## D1 -0.0029531 0.0019525 -1.512 0.136976
## E1 -0.0041875 0.0010437 -4.012 0.000210 ***
## F1 -0.0077469 0.0007380 -10.497 5.05e-14 ***
## A1:B1 0.0037250 0.0020874 1.785 0.080655 .
## A1:C1 0.0044812 0.0014760 3.036 0.003866 **
## B1:C1 0.0071000 0.0020874 3.401 0.001359 **
## A1:D1 -0.0025500 0.0020874 -1.222 0.227809
## B1:D1 0.0079688 0.0025565 3.117 0.003083 **
## C1:D1 -0.0004750 0.0020874 -0.228 0.820954
## A1:E1 NA NA NA NA
## B1:E1 NA NA NA NA
## C1:E1 NA NA NA NA
## D1:E1 0.0014813 0.0014760 1.004 0.320619
## A1:F1 NA NA NA NA
## B1:F1 NA NA NA NA
## C1:F1 NA NA NA NA
## D1:F1 NA NA NA NA
## E1:F1 NA NA NA NA
## A1:B1:C1 NA NA NA NA
## A1:B1:D1 0.0002125 0.0029520 0.072 0.942912
## A1:C1:D1 NA NA NA NA
## B1:C1:D1 -0.0069375 0.0029520 -2.350 0.022926 *
## A1:B1:E1 NA NA NA NA
## A1:C1:E1 NA NA NA NA
## B1:C1:E1 NA NA NA NA
## A1:D1:E1 NA NA NA NA
## B1:D1:E1 NA NA NA NA
## C1:D1:E1 NA NA NA NA
## A1:B1:F1 NA NA NA NA
## A1:C1:F1 NA NA NA NA
## B1:C1:F1 NA NA NA NA
## A1:D1:F1 NA NA NA NA
## B1:D1:F1 NA NA NA NA
## C1:D1:F1 NA NA NA NA
## A1:E1:F1 NA NA NA NA
## B1:E1:F1 NA NA NA NA
## C1:E1:F1 NA NA NA NA
## D1:E1:F1 NA NA NA NA
## A1:B1:C1:D1 NA NA NA NA
## A1:B1:C1:E1 NA NA NA NA
## A1:B1:D1:E1 NA NA NA NA
## A1:C1:D1:E1 NA NA NA NA
## B1:C1:D1:E1 NA NA NA NA
## A1:B1:C1:F1 NA NA NA NA
## A1:B1:D1:F1 NA NA NA NA
## A1:C1:D1:F1 NA NA NA NA
## B1:C1:D1:F1 NA NA NA NA
## A1:B1:E1:F1 NA NA NA NA
## A1:C1:E1:F1 NA NA NA NA
## B1:C1:E1:F1 NA NA NA NA
## A1:D1:E1:F1 NA NA NA NA
## B1:D1:E1:F1 NA NA NA NA
## C1:D1:E1:F1 NA NA NA NA
## A1:B1:C1:D1:E1 NA NA NA NA
## A1:B1:C1:D1:F1 NA NA NA NA
## A1:B1:C1:E1:F1 NA NA NA NA
## A1:B1:D1:E1:F1 NA NA NA NA
## A1:C1:D1:E1:F1 NA NA NA NA
## B1:C1:D1:E1:F1 NA NA NA NA
## A1:B1:C1:D1:E1:F1 NA NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.002952 on 48 degrees of freedom
## Multiple R-squared: 0.849, Adjusted R-squared: 0.8018
## F-statistic: 18 on 15 and 48 DF, p-value: 9.012e-15
One <- c(8)
AD <- c(10)
BD <- c(12)
AB <- c(7)
CD <- c(13)
AC <- c(6)
BC <- c(5)
ABCD <- c(11)
EffectA <- (2*(AD+AB+AC+ABCD-One-BD-CD-BC))/(16)
EffectA
## [1] -0.5
EffectB <- (2*(BD+AB+BC+ABCD-One-AD-CD-AC))/(16)
EffectB
## [1] -0.25
EffectC <- (2*(CD+AC+BC+ABCD-One-AD-BD-AB))/(16)
EffectC
## [1] -0.25
EffectD <- (2*(AD+BD+CD+ABCD-One-AB-AC-BC))/(16)
EffectD
## [1] 2.5
library(FrF2)
design <- FrF2(nfactors=7,resolution=3,randomize=FALSE)
design
## A B C D E F G
## 1 -1 -1 -1 1 1 1 -1
## 2 1 -1 -1 -1 -1 1 1
## 3 -1 1 -1 -1 1 -1 1
## 4 1 1 -1 1 -1 -1 -1
## 5 -1 -1 1 1 -1 -1 1
## 6 1 -1 1 -1 1 -1 -1
## 7 -1 1 1 -1 -1 1 -1
## 8 1 1 1 1 1 1 1
## class=design, type= FrF2
design2 <- fold.design(design,column=1)
design2
## A B C fold D E F G
## 1 -1 -1 -1 original 1 1 1 -1
## 2 1 -1 -1 original -1 -1 1 1
## 3 -1 1 -1 original -1 1 -1 1
## 4 1 1 -1 original 1 -1 -1 -1
## 5 -1 -1 1 original 1 -1 -1 1
## 6 1 -1 1 original -1 1 -1 -1
## 7 -1 1 1 original -1 -1 1 -1
## 8 1 1 1 original 1 1 1 1
## 9 1 -1 -1 mirror 1 1 1 -1
## 10 -1 -1 -1 mirror -1 -1 1 1
## 11 1 1 -1 mirror -1 1 -1 1
## 12 -1 1 -1 mirror 1 -1 -1 -1
## 13 1 -1 1 mirror 1 -1 -1 1
## 14 -1 -1 1 mirror -1 1 -1 -1
## 15 1 1 1 mirror -1 -1 1 -1
## 16 -1 1 1 mirror 1 1 1 1
## class=design, type= FrF2.folded
design3 <- design2[-c(1,3,5,7,10,12,14,16),]
design3
## A B C fold D E F G
## 2 1 -1 -1 original -1 -1 1 1
## 4 1 1 -1 original 1 -1 -1 -1
## 6 1 -1 1 original -1 1 -1 -1
## 8 1 1 1 original 1 1 1 1
## 9 1 -1 -1 mirror 1 1 1 -1
## 11 1 1 -1 mirror -1 1 -1 1
## 13 1 -1 1 mirror 1 -1 -1 1
## 15 1 1 1 mirror -1 -1 1 -1
aliasprint(design2)
## $legend
## [1] A=A B=B C=C D=fold E=D F=E G=F H=G
##
## $main
## [1] B=CG=FH C=BG=EH E=CH=FG F=BH=EG G=BC=EF H=BF=CE
##
## $fi2
## [1] AB=-DE AC=-DF AD=-BE=-CF=-GH AE=-BD AF=-CD
## [6] AG=-DH AH=-DG