Statistical analysis on IRIS data set
mydata=iris
summary(mydata)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
## 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
## Median :5.800 Median :3.000 Median :4.350 Median :1.300
## Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
## 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
## Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500
## Species
## setosa :50
## versicolor:50
## virginica :50
##
##
##
str(mydata)
## 'data.frame': 150 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
lapply(mydata[1:4],mean)
## $Sepal.Length
## [1] 5.843333
##
## $Sepal.Width
## [1] 3.057333
##
## $Petal.Length
## [1] 3.758
##
## $Petal.Width
## [1] 1.199333
lapply(mydata[1:4],median)
## $Sepal.Length
## [1] 5.8
##
## $Sepal.Width
## [1] 3
##
## $Petal.Length
## [1] 4.35
##
## $Petal.Width
## [1] 1.3
lapply(mydata[1:4],var)
## $Sepal.Length
## [1] 0.6856935
##
## $Sepal.Width
## [1] 0.1899794
##
## $Petal.Length
## [1] 3.116278
##
## $Petal.Width
## [1] 0.5810063
lapply(mydata[1:4],sd)
## $Sepal.Length
## [1] 0.8280661
##
## $Sepal.Width
## [1] 0.4358663
##
## $Petal.Length
## [1] 1.765298
##
## $Petal.Width
## [1] 0.7622377
mydata$size <- ifelse(mydata$Sepal.Length < median(mydata$Sepal.Length),
"small", "big")
table(mydata$Species, mydata$size)
##
## big small
## setosa 1 49
## versicolor 29 21
## virginica 47 3
You can also embed plots, for iris dataset:
boxplot(mydata$Sepal.Length,mydata$Sepal.Width,mydata$Petal.Length,mydata$Petal.Width,
col = c('blue','green','yellow','red'))
barplot(mydata$Sepal.Length,mydata$Sepal.Width,mydata$Petal.Length,mydata$Petal.Width,
col = c('blue','green','red','yellow'),(args.legend = colnames(mydata)))
plot(mydata)