
Title: Design of Experiments-Project
Aim: Testing whether landing distance of three different balls are same or different.
Instructor - Dr.Timothy Matis
Authors: Sujit Thakur, Tajammul Mohammed, Gowtham Sasikumar
INTRODUCTION
This 3-part project was done using a statapult. We have designed experiments to find the significant factors that affect the distance in which the ball is thrown. The statapult has three parameters in our experiment:
• Pin Elevation
• Bungee Position
• Release Angle

Part 1
Section 1-A
Determining the size using power calculation
The total number of populations are three(3). So, the value of K is 3
As our K is odd and with maximum variability, Hence the formula of effect f is as follows
\(f\) = \((d/2)\)*\(\sqrt{K^2 -1}\)
where f = effect
d = effect size and the value of d is 0.5
x <- 0.08333*(sqrt(8))
pwr.anova.test(k=3,n=NULL,f=x,sig.level = 0.05 , power = 0.75)
##
## Balanced one-way analysis of variance power calculation
##
## k = 3
## n = 52.55986
## f = 0.2356928
## sig.level = 0.05
## power = 0.75
##
## NOTE: n is number in each group
We can see from the power calculation that number of samples required per group is 53 , hence we need to collect a total of 159 observations since we have 3 different populations.
Section 1-B
Randomized Design of Sample Collection - Complete Random Design
trt <- c("yellow","red","black")
crd <- design.crd(trt,r=53,seed=1234)
crd$book
## plots r trt
## 1 101 1 yellow
## 2 102 2 yellow
## 3 103 3 yellow
## 4 104 1 black
## 5 105 4 yellow
## 6 106 2 black
## 7 107 5 yellow
## 8 108 1 red
## 9 109 6 yellow
## 10 110 7 yellow
## 11 111 3 black
## 12 112 2 red
## 13 113 4 black
## 14 114 3 red
## 15 115 5 black
## 16 116 6 black
## 17 117 7 black
## 18 118 8 yellow
## 19 119 8 black
## 20 120 4 red
## 21 121 9 yellow
## 22 122 5 red
## 23 123 6 red
## 24 124 7 red
## 25 125 10 yellow
## 26 126 9 black
## 27 127 8 red
## 28 128 10 black
## 29 129 11 black
## 30 130 11 yellow
## 31 131 9 red
## 32 132 10 red
## 33 133 12 yellow
## 34 134 11 red
## 35 135 12 red
## 36 136 13 red
## 37 137 13 yellow
## 38 138 14 yellow
## 39 139 14 red
## 40 140 15 red
## 41 141 12 black
## 42 142 13 black
## 43 143 16 red
## 44 144 14 black
## 45 145 15 black
## 46 146 15 yellow
## 47 147 16 yellow
## 48 148 16 black
## 49 149 17 black
## 50 150 17 red
## 51 151 17 yellow
## 52 152 18 yellow
## 53 153 18 red
## 54 154 18 black
## 55 155 19 red
## 56 156 20 red
## 57 157 19 black
## 58 158 20 black
## 59 159 21 black
## 60 160 22 black
## 61 161 21 red
## 62 162 22 red
## 63 163 23 black
## 64 164 23 red
## 65 165 24 red
## 66 166 24 black
## 67 167 19 yellow
## 68 168 25 black
## 69 169 20 yellow
## 70 170 25 red
## 71 171 26 red
## 72 172 27 red
## 73 173 21 yellow
## 74 174 22 yellow
## 75 175 28 red
## 76 176 23 yellow
## 77 177 29 red
## 78 178 30 red
## 79 179 31 red
## 80 180 24 yellow
## 81 181 26 black
## 82 182 25 yellow
## 83 183 26 yellow
## 84 184 27 black
## 85 185 27 yellow
## 86 186 28 yellow
## 87 187 32 red
## 88 188 29 yellow
## 89 189 28 black
## 90 190 30 yellow
## 91 191 29 black
## 92 192 30 black
## 93 193 31 black
## 94 194 33 red
## 95 195 32 black
## 96 196 31 yellow
## 97 197 34 red
## 98 198 33 black
## 99 199 34 black
## 100 200 32 yellow
## 101 201 33 yellow
## 102 202 34 yellow
## 103 203 35 yellow
## 104 204 36 yellow
## 105 205 35 red
## 106 206 36 red
## 107 207 37 red
## 108 208 38 red
## 109 209 35 black
## 110 210 37 yellow
## 111 211 36 black
## 112 212 38 yellow
## 113 213 39 red
## 114 214 39 yellow
## 115 215 40 red
## 116 216 37 black
## 117 217 38 black
## 118 218 39 black
## 119 219 41 red
## 120 220 40 black
## 121 221 40 yellow
## 122 222 41 yellow
## 123 223 42 yellow
## 124 224 43 yellow
## 125 225 41 black
## 126 226 44 yellow
## 127 227 42 black
## 128 228 43 black
## 129 229 44 black
## 130 230 45 black
## 131 231 42 red
## 132 232 43 red
## 133 233 44 red
## 134 234 45 yellow
## 135 235 46 black
## 136 236 45 red
## 137 237 47 black
## 138 238 46 red
## 139 239 48 black
## 140 240 46 yellow
## 141 241 47 yellow
## 142 242 49 black
## 143 243 47 red
## 144 244 48 red
## 145 245 50 black
## 146 246 48 yellow
## 147 247 49 red
## 148 248 50 red
## 149 249 51 red
## 150 250 51 black
## 151 251 52 red
## 152 252 49 yellow
## 153 253 50 yellow
## 154 254 51 yellow
## 155 255 52 black
## 156 256 52 yellow
## 157 257 53 black
## 158 258 53 yellow
## 159 259 53 red
order <- as.data.frame(crd$book)
Section 1-C
Collection of Data
data <- read_excel("C:\\Users\\sjtha\\OneDrive\\Documents\\Fall 2021\\Design Of Experiment - Dr-Matis\\Project\\Proj1 retake\\Maindata.xlsx")
data <- as.data.frame(data)
data
## plots r trt Response
## 1 151 17 yellow 90
## 2 180 24 yellow 88
## 3 182 25 yellow 90
## 4 186 28 yellow 88
## 5 202 34 yellow 85
## 6 204 36 yellow 87
## 7 224 43 yellow 90
## 8 253 50 yellow 90
## 9 121 9 yellow 87
## 10 130 11 yellow 88
## 11 221 40 yellow 85
## 12 234 45 yellow 87
## 13 241 47 yellow 88
## 14 105 4 yellow 88
## 15 118 8 yellow 87
## 16 138 14 yellow 89
## 17 176 23 yellow 87
## 18 183 26 yellow 89
## 19 196 31 yellow 89
## 20 240 46 yellow 85
## 21 254 51 yellow 88
## 22 102 2 yellow 88
## 23 147 16 yellow 87
## 24 167 19 yellow 90
## 25 201 33 yellow 85
## 26 252 49 yellow 87
## 27 103 3 yellow 87
## 28 137 13 yellow 88
## 29 152 18 yellow 85
## 30 185 27 yellow 85
## 31 188 29 yellow 87
## 32 203 35 yellow 86
## 33 223 42 yellow 87
## 34 258 53 yellow 89
## 35 101 1 yellow 90
## 36 146 15 yellow 88
## 37 212 38 yellow 86
## 38 109 6 yellow 88
## 39 174 22 yellow 90
## 40 200 32 yellow 88
## 41 210 37 yellow 86
## 42 222 41 yellow 87
## 43 246 48 yellow 89
## 44 256 52 yellow 90
## 45 107 5 yellow 90
## 46 110 7 yellow 90
## 47 125 10 yellow 86
## 48 133 12 yellow 86
## 49 169 20 yellow 90
## 50 173 21 yellow 85
## 51 190 30 yellow 85
## 52 214 39 yellow 89
## 53 226 44 yellow 85
## 54 108 1 red 84
## 55 112 2 red 87
## 56 114 3 red 86
## 57 120 4 red 87
## 58 122 5 red 86
## 59 123 6 red 86
## 60 124 7 red 83
## 61 127 8 red 86
## 62 131 9 red 86
## 63 132 10 red 85
## 64 134 11 red 84
## 65 135 12 red 86
## 66 136 13 red 84
## 67 139 14 red 86
## 68 140 15 red 85
## 69 143 16 red 83
## 70 150 17 red 84
## 71 153 18 red 87
## 72 155 19 red 87
## 73 156 20 red 86
## 74 161 21 red 87
## 75 162 22 red 83
## 76 164 23 red 84
## 77 165 24 red 85
## 78 170 25 red 85
## 79 171 26 red 85
## 80 172 27 red 84
## 81 175 28 red 83
## 82 177 29 red 87
## 83 178 30 red 85
## 84 179 31 red 85
## 85 187 32 red 84
## 86 194 33 red 83
## 87 197 34 red 87
## 88 205 35 red 86
## 89 206 36 red 83
## 90 207 37 red 86
## 91 208 38 red 83
## 92 213 39 red 83
## 93 215 40 red 85
## 94 219 41 red 86
## 95 231 42 red 83
## 96 232 43 red 85
## 97 233 44 red 85
## 98 236 45 red 84
## 99 238 46 red 83
## 100 243 47 red 86
## 101 244 48 red 85
## 102 247 49 red 83
## 103 248 50 red 87
## 104 249 51 red 84
## 105 251 52 red 84
## 106 259 53 red 84
## 107 104 1 black 86
## 108 106 2 black 82
## 109 111 3 black 86
## 110 113 4 black 87
## 111 115 5 black 85
## 112 116 6 black 84
## 113 117 7 black 87
## 114 119 8 black 82
## 115 126 9 black 86
## 116 128 10 black 83
## 117 129 11 black 82
## 118 141 12 black 84
## 119 142 13 black 84
## 120 144 14 black 87
## 121 145 15 black 83
## 122 148 16 black 85
## 123 149 17 black 85
## 124 154 18 black 85
## 125 157 19 black 86
## 126 158 20 black 84
## 127 159 21 black 83
## 128 160 22 black 86
## 129 163 23 black 84
## 130 166 24 black 85
## 131 168 25 black 86
## 132 181 26 black 83
## 133 184 27 black 83
## 134 189 28 black 82
## 135 191 29 black 82
## 136 192 30 black 86
## 137 193 31 black 83
## 138 195 32 black 84
## 139 198 33 black 85
## 140 199 34 black 86
## 141 209 35 black 85
## 142 211 36 black 86
## 143 216 37 black 87
## 144 217 38 black 86
## 145 218 39 black 82
## 146 220 40 black 84
## 147 225 41 black 84
## 148 227 42 black 82
## 149 228 43 black 84
## 150 229 44 black 86
## 151 230 45 black 84
## 152 235 46 black 86
## 153 237 47 black 83
## 154 239 48 black 87
## 155 242 49 black 86
## 156 245 50 black 86
## 157 250 51 black 82
## 158 255 52 black 87
## 159 257 53 black 83
data$Response <- as.numeric(data$Response)
data$trt <- as.factor(data$trt)
Section 1-D
Hypothesis Testing
Notations :-
- Yellow is ball 1
- Red is ball 2
- Black is ball 3
Null Hypothesis : \(H_o: \mu_1= \mu_2 = \mu_3 = \mu\)
Alternative Hypothesis : \(H_a\): at least one of the \(\mu_i\) differs
first.model <- aov(data$Response~data$trt,data = data)
summary(first.model)
## Df Sum Sq Mean Sq F value Pr(>F)
## data$trt 2 299.8 149.89 59.33 <2e-16 ***
## Residuals 156 394.1 2.53
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
We can see that P value is <2e-16 which is smaller than the \(\alpha\) value of 0.05 .
Hence we reject Null Hypothesis , claiming that at least one of the mean differs.
Section 1-D-1
Conclusions on residual plots
From above residual plots we can state that our assumptions for anova model as follows:
As the residuals fall fairly in straight line in the Normal probability plot, it shows that the residuals are fairly normally distributed
The residual vs fitted value plot shows that variance does differ significantly as it shows a pattern of divergent funnel with convergent funnel at the end.
Section 1-D-2
Section 1-D-3
Section 1-E
Investigating pairwise comparisons
tukey_firstmodel <- TukeyHSD(second.model)
tukey_firstmodel
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov.default(formula = data2$Response ~ data2$trt, data = data2)
##
## $`data2$trt`
## diff lwr upr p adj
## red-black -0.0003546236 -0.001054971 0.0003457233 0.4560355
## yellow-black -0.0029324588 -0.003632806 -0.0022321119 0.0000000
## yellow-red -0.0025778351 -0.003278182 -0.0018774882 0.0000000
plot(tukey_firstmodel,col="deepskyblue")

From TukeysHSD results and plot, we can claim that pair-Red and Black are similar because zero lies in the 95% confidence interval range.
The mean value of yellow differs from red as well as black. So the pairs of yellow-red and yellow-black differ significantly because 0 is not in the 95% confidence interval range.
Part 2
Section 2-A
Model Equation:
This is a mixed effects model since one factor has fixed effect and the other factor has random effect
\(Y_{ijk}\) = \(\mu\) + \(\alpha_i\) + \(\beta_j\) + \(\alpha\beta_{ij}\) + \(\epsilon_{ijk}\)
- \(\alpha_i\) corresponds to the effect of pin elevation
- \(\beta_j\) corresponds to the effect of release angle
Our Hypothesis for interaction effect (As this is a larger term we will start testing from this) will be:
Null Hypothesis: \(\sigma^2_{\alpha\beta} = 0\)
Alternative Hypothesis: \(\sigma^2_{\alpha\beta} \neq 0\)
Our Hypothesis for Main Effect of pin elevation:
This main factor has fixed effect on our model.
Main effect - Pin elevation - Hypothesis
Null Hypothesis: \(\alpha_i = 0\) For all i
Alternative Hypothesis: \(\alpha_i \neq 0\) for some i
Our Hypothesis for Main Effect of Release angle:
This main factor has a random effect on our model.
Main effect - Release Angle - Hypothesis
Null Hypothesis : \(\sigma^2_\beta = 0\)
Alternative Hypothesis : \(\sigma^2_\beta\) \(\neq 0\)
Our values for I = 2, J= 3, and K = 3.
- I = levels of factor A (pin elevation)
- J = levels of factor B (release angle)
- K = replicates
We will use level of significance as \(\alpha\) = 0.05
Please note that:
- “1” in Factor A (pin elevation ) is the bottom most location.
- “2” in Factor A (Pin Elevation) is the third pin location from bottom.
- “1” in Factor B corresponds to 110 degrees.
- “2” in Factor B corresponds to 140 degrees.
- “3” in Factor B corresponds to 170 degrees.
Section 2-B
Randomized Design Layout
trts <- c(2,3)
design <- design.ab(trt = trts ,r =3 , design = "crd" , seed = 42069)
design$book
## plots r A B
## 1 101 1 1 3
## 2 102 1 2 2
## 3 103 1 1 1
## 4 104 2 2 2
## 5 105 2 1 1
## 6 106 1 1 2
## 7 107 2 1 2
## 8 108 2 1 3
## 9 109 1 2 1
## 10 110 3 2 2
## 11 111 1 2 3
## 12 112 2 2 1
## 13 113 3 1 1
## 14 114 2 2 3
## 15 115 3 1 2
## 16 116 3 2 3
## 17 117 3 2 1
## 18 118 3 1 3
Hence we have collected the data as per the above randomized order, following is the data we collected:
Section 2-C
Data Collection
Factor_A <- c("1","2","1","2","1","1","1","1","2","2","2","2","1","2","1","2","2","1")
Factor_B <- c("3","2","1","2","1","2","2","3","1","2","3","1","1","3","2","3","1","3")
Response <- c(48,38,25,38,21,35,40,45,28,47,60,27,23,57,39,59,27,45)
dat <- data.frame(Factor_A,Factor_B,Response)
dat$Factor_A <- as.fixed(dat$Factor_A)
dat$Factor_B <- as.random(dat$Factor_B)
dat
## Factor_A Factor_B Response
## 1 1 3 48
## 2 2 2 38
## 3 1 1 25
## 4 2 2 38
## 5 1 1 21
## 6 1 2 35
## 7 1 2 40
## 8 1 3 45
## 9 2 1 28
## 10 2 2 47
## 11 2 3 60
## 12 2 1 27
## 13 1 1 23
## 14 2 3 57
## 15 1 2 39
## 16 2 3 59
## 17 2 1 27
## 18 1 3 45
Section 2-D
Hypothesis Testing
Testing Hypothesis now
model <- aov(Response~Factor_A+Factor_B+Factor_A*Factor_B,data = dat)
GAD::gad(model)
## Analysis of Variance Table
##
## Response: Response
## Df Sum Sq Mean Sq F value Pr(>F)
## Factor_A 1 200.00 200.00 4.8583 0.1583
## Factor_B 2 2216.33 1108.17 152.2672 2.969e-09 ***
## Factor_A:Factor_B 2 82.33 41.17 5.6565 0.0186 *
## Residual 12 87.33 7.28
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
As we can see from above test, the P value for interaction effect is 0.0186 and we reject the null hypothesis stating that there is a significant interaction between the two factors (pin elevation and release angle).
Since we reject the null hypothesis for interaction effect, main effects don’t make more sense as the interaction effects masks the main effects.
Following is the interaction plot:
interaction.plot(Factor_A,Factor_B,Response,col="blue")

From the above residual plots we can see that if we neglect some outliers, the data looks fairly normally distributed.
Also, the residual vs fitted plot shows that the variances follow a diverging and then converging pattern which implies that the variances are not constant and so the model is not adequate.
Part 3
This is an unreplicated 2^4 design with four factors and each factor has a low level and a high level. The four factors are:
- Factor A is Pin Elevation and it has two levels (-1 is the low level and it is position 1 and 1 is the high level and it is position 3)
- Factor B is Bungee Position and it has two levels (-1 is the low level and it is position 2 and 1 is the high level and it is position 3)
- Factor C is Release Angle and it has two levels (-1 is the low level and it is 140 degrees and 1 is the high level and it is 170 degrees)
- Factor D is Ball Type and it has two levels (-1 is the low level and it is yellow ball and 1 is the high level and it is red ball)
Section 3-A and 3-B
Proposing data collection layout and recording observations
Data collection layout
trts <- c(2,2,2,2)
design <- design.ab(trt = trts ,r =1 , design = "crd" , seed = 42069)
design$book
## plots r A B C D
## 1 101 1 2 1 1 2
## 2 102 1 2 2 2 2
## 3 103 1 2 1 1 1
## 4 104 1 1 1 1 2
## 5 105 1 1 1 2 1
## 6 106 1 1 1 1 1
## 7 107 1 1 2 1 1
## 8 108 1 1 2 1 2
## 9 109 1 1 2 2 1
## 10 110 1 1 2 2 2
## 11 111 1 2 1 2 1
## 12 112 1 2 2 1 2
## 13 113 1 2 2 1 1
## 14 114 1 1 1 2 2
## 15 115 1 2 1 2 2
## 16 116 1 2 2 2 1
dataorder<-read_excel("dataorder.xlsx")
dataorder<-as.data.frame(dataorder)
dataorder
## plots r A B C D Values
## 1 101 1 1 -1 -1 1 31
## 2 102 1 1 1 1 1 62
## 3 103 1 1 -1 -1 -1 46
## 4 104 1 -1 -1 -1 1 28
## 5 105 1 -1 -1 1 -1 44
## 6 106 1 -1 -1 -1 -1 35
## 7 107 1 -1 1 -1 -1 34
## 8 108 1 -1 1 -1 1 33
## 9 109 1 -1 1 1 -1 47
## 10 110 1 -1 1 1 1 38
## 11 111 1 1 -1 1 -1 64
## 12 112 1 1 1 -1 1 36
## 13 113 1 1 1 -1 -1 35
## 14 114 1 -1 -1 1 1 42
## 15 115 1 1 -1 1 1 55
## 16 116 1 1 1 1 -1 58
Section3- C
Model Equation:
Model Equation:
\(Y_{ijkl}\) = \(\mu\) + \(\alpha_i\) + \(\beta_j\) + \(\alpha\beta_{ij}\) + \(\gamma_k\) + \(\alpha\gamma_{ik}\) + \(\beta\gamma_{jk}\) + \(\alpha\beta\gamma_{ijk}\) + \(\delta_l\) + \(\alpha\delta_{il}\) + \(\beta\delta_{jl}\) + \(\gamma\delta_{kl}\) + \(\alpha\beta\delta_{ijl}\) + \(\alpha\gamma\delta_{ikl}\) + \(\beta\gamma\delta_{jkl}\) + \(\alpha\beta\gamma\delta_{ijkl}\) + \(\epsilon_{ijkl}\)
- \(\alpha_i\) corresponds to Factor A (Pin Elevation)
- \(\beta_j\) corresponds to Factor B (Bungee Position)
- \(\gamma_k\) corresponds to Factor C (Release Angle)
- \(\delta_l\) corresponds to Factor D (Ball Type)
model<-lm(Values~A*B*C*D,data = dataorder)
halfnormal(model)
##
## Significant effects (alpha=0.05, Lenth method):
## [1] C A A:C D

coef(model)
## (Intercept) A B C D
## 4.300000e+01 5.375000e+00 -1.250000e-01 8.250000e+00 -2.375000e+00
## A:B A:C B:C A:D B:D
## -5.000000e-01 3.125000e+00 1.250000e-01 -8.448103e-16 1.750000e+00
## C:D A:B:C A:B:D A:C:D B:C:D
## 3.750000e-01 7.500000e-01 1.875000e+00 7.500000e-01 -1.000000e+00
## A:B:C:D
## 6.250000e-01
From the halfnormal plots, we could see that the significant factors are A,C,A:C and D. This means that now the model is just run with only these effects and the other effects are clubbed into the error term. This means that only the Pin Elevation, Release Angle and the Ball type has a significant effect on the model
Section 3-D
Performing Anova for determining final model equation
Now the hypothesis that are being tested are
Main effect - Pin elevation - Hypothesis
Null Hypothesis: \(\alpha_i = 0\) For all i
Alternative Hypothesis: \(\alpha_i \neq 0\) for some i
Main effect - Release angle - Hypothesis
Null Hypothesis: \(\gamma_k = 0\) For all k
Alternative Hypothesis: \(\gamma_k \neq 0\) for some k
Main effect - Ball Type - Hypothesis
Null Hypothesis: \(\delta_l = 0\) For all l
Alternative Hypothesis: \(\delta_l \neq 0\) for some l
Interaction effect - Pin Elevation * Release Angle(AC) - Hypothesis
Null Hypothesis: \(\alpha\gamma_{ik} = 0\)
Alternative Hypothesis: \(\alpha\gamma_{ik} \neq 0\)
dataorder1<-dataorder[,c("A","C","D","Values")]
dataorder1
## A C D Values
## 1 1 -1 1 31
## 2 1 1 1 62
## 3 1 -1 -1 46
## 4 -1 -1 1 28
## 5 -1 1 -1 44
## 6 -1 -1 -1 35
## 7 -1 -1 -1 34
## 8 -1 -1 1 33
## 9 -1 1 -1 47
## 10 -1 1 1 38
## 11 1 1 -1 64
## 12 1 -1 1 36
## 13 1 -1 -1 35
## 14 -1 1 1 42
## 15 1 1 1 55
## 16 1 1 -1 58
dataorder1$A<-as.fixed(dataorder1$A)
dataorder1$C<-as.fixed(dataorder1$C)
dataorder1$D<-as.fixed(dataorder1$D)
model1<-aov(Values~A*C+D,data = dataorder1)
GAD::gad(model1)
## Analysis of Variance Table
##
## Response: Values
## Df Sum Sq Mean Sq F value Pr(>F)
## A 1 462.25 462.25 33.3974 0.000123 ***
## C 1 1089.00 1089.00 78.6798 2.416e-06 ***
## D 1 90.25 90.25 6.5205 0.026826 *
## A:C 1 156.25 156.25 11.2890 0.006365 **
## Residual 11 152.25 13.84
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
From the ANOVA table, we could see that the p-value for factor A is 0.00012, p-value for Factor C is 0.0000024, p-value for interaction AC is 0.0063 and p-value for Factor D is 0.026. These results shows that these factors are significant since these values are less than the \(\alpha\) value of 0.05 and so we reject the null hypothesis and claim that they have a significant effect on the model.
The final model equation would be:
\(Y_{ikl}\) = \(\mu\) + \(\alpha_i\) + \(\gamma_k\) + \(\alpha\gamma_{ik}\) + \(\delta_l\) + \(\epsilon_{ikl}\)
- \(\alpha_i\) corresponds to Factor A (Pin Elevation)
- \(\gamma_k\) corresponds to Factor C (Release Angle)
- \(\delta_l\) corresponds to Factor D (Ball Type)
- \(\alpha\gamma_{ik}\) corresponds to the interaction effect of factor A and C(Pin elevation*release angle)
- \(\epsilon_{ikl}\) is the standard error term
APPENDIX
The following is all the R Markdown Code which we have used to knit our report:
knitr::opts_chunk$set(echo = TRUE)
library(pwr)
library(agricolae)
library(readxl)
library(MASS)
library(GAD)
library(DoE.base)
x <- 0.08333*(sqrt(8))
pwr.anova.test(k=3,n=NULL,f=x,sig.level = 0.05 , power = 0.75)
trt <- c("yellow","red","black")
crd <- design.crd(trt,r=53,seed=1234)
crd$book
order <- as.data.frame(crd$book)
data <- read_excel("C:\\Users\\sjtha\\OneDrive\\Documents\\Fall 2021\\Design Of Experiment - Dr-Matis\\Project\\Proj1 retake\\Maindata.xlsx")
data <- as.data.frame(data)
data
data$Response <- as.numeric(data$Response)
data$trt <- as.factor(data$trt)
first.model <- aov(data$Response~data$trt,data = data)
summary(first.model)
plot(first.model,col="deepskyblue")
boxcox(first.model,col="deepskyblue")
lambda = -0.25
data2 <- data
data2$Response <- (data2$Response)^lambda
data2
#Part 2
trts <- c(2,3)
design <- design.ab(trt = trts ,r =3 , design = "crd" , seed = 42069)
design$book
Factor_A <- c("1","2","1","2","1","1","1","1","2","2","2","2","1","2","1","2","2","1")
Factor_B <- c("3","2","1","2","1","2","2","3","1","2","3","1","1","3","2","3","1","3")
Response <- c(48,38,25,38,21,35,40,45,28,47,60,27,23,57,39,59,27,45)
dat <- data.frame(Factor_A,Factor_B,Response)
dat$Factor_A <- as.fixed(dat$Factor_A)
dat$Factor_B <- as.random(dat$Factor_B)
dat
model <- aov(Response~Factor_A+Factor_B+Factor_A*Factor_B,data = dat)
GAD::gad(model)
interaction.plot(Factor_A,Factor_B,Response,col="blue")
plot(model,col="deepskyblue")
#Part 3
trts <- c(2,2,2,2)
design <- design.ab(trt = trts ,r =1 , design = "crd" , seed = 42069)
design$book
dataorder<-read_excel("dataorder.xlsx")
dataorder<-as.data.frame(dataorder)
dataorder
model<-lm(Values~A*B*C*D,data = dataorder)
halfnormal(model)
coef(model)
dataorder1<-dataorder[,c("A","C","D","Values")]
dataorder1$A<-as.fixed(dataorder1$A)
dataorder1$C<-as.fixed(dataorder1$C)
dataorder1$D<-as.fixed(dataorder1$D)
model1<-aov(Values~A*C+D,data = dataorder1)
GAD::gad(model1)
ACKNOWLEDGEMENT
Group 1 would like to thank Dr. Timothy Matis and Mr. Pritom Mondal for their help and guidance throughout this project and course.
REFERENCES
2. Texas Tech University - IE 5342, Course material and videos by Dr. Timothy Matis.
3. Montgomery, Douglas C.. Design and Analysis of Experiments. United Kingdom, Wiley, 2013.
5. Libraries used:
- pwr
- agricolae
- readxl
- writexl
- MASS
- GAD
- DoE.base