library(bigMap)
# source graph plot
source('../graphs.R')
Load data
load('../s3d.RData')
Run UMAP (python implementation, default settings)
# perplexities
ppx.list <- round(nrow(s3d$data) *c(.01, .05, .1, .2, .3, .4, .5, .6, .7, .8, .9, .95, .99), 0)
Y = umap.UMAP(n_neighbors = ppx, min_dist = 0.1, metric = 'euclidean', init = 'random').fit_transform(s3d$data)
Load UMAP results
load('./glist.RData')
hl-Correlation
g.list <- lapply(g.list, function(g) bdm.hlCorr(D, g, zSampleSize = 1000, threads = 4))
save(g.list, file = './glist.RData')
hlTable <- sapply(g.list, function(g) summary(g$hlC)[4])
hlTable <- matrix(round(hlTable, 4), nrow = 1)
colnames(hlTable) <- sapply(g.list, function(g) g$ppx$ppx)
rownames(hlTable) <- c('<hlC>')
knitr::kable(hlTable, caption = 'hl-Correlation') %>%
kable_styling(full_width = F)
hl-Correlation
|
|
20
|
102
|
205
|
410
|
615
|
820
|
1025
|
1230
|
1435
|
1640
|
1845
|
1948
|
2030
|
|
<hlC>
|
0.2119
|
0.3801
|
0.5216
|
0.4483
|
0.4275
|
0.4119
|
0.4275
|
0.5948
|
0.5527
|
0.518
|
0.6246
|
0.5206
|
0.5565
|
Kary-neighborhood preservation
g.list <- lapply(g.list, function(g) bdm.knp(D, g, k.max = NULL, sampling = 0.9, threads = 4))
save(g.list, file = './glist.RData')
bdm.knp.plot(g.list)

Running Times
rTimes <- round(sapply(g.list, function(g) g$t$UMAP), 0)
rTimes <- matrix(rTimes, nrow = 1)
colnames(rTimes) <- sapply(g.list, function(g) g$ppx$ppx)
rownames(rTimes) <- c('UMAP')
knitr::kable(rTimes, caption = 'Computation times (s)') %>%
kable_styling(full_width = F)
Computation times (s)
|
|
20
|
102
|
205
|
410
|
615
|
820
|
1025
|
1230
|
1435
|
1640
|
1845
|
1948
|
2030
|
|
UMAP
|
9
|
6
|
8
|
9
|
11
|
11
|
13
|
13
|
14
|
15
|
15
|
16
|
16
|
Run on: Intel(R) Xeon(R) CPU E31225 @ 3.10GHz, 4 cores, 16GB RAM.