urban traffic
## Rows: 135
## Columns: 18
## $ hour_coded <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1~
## $ immobilized_bus <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
## $ broken_truck <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
## $ vehicle_excess <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
## $ accident_victim <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
## $ running_over <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
## $ fire_vehicles <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
## $ occurrence_involving_freight <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
## $ incident_involving_dangerous_freight <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
## $ lack_of_electricity <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
## $ fire <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
## $ point_of_flooding <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
## $ manifestations <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
## $ defect_in_the_network_of_trolleybuses <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
## $ tree_on_the_road <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
## $ semaphore_off <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
## $ intermittent_semaphore <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
## $ slowness_in_traffic_percent <dbl> 4.1, 6.6, 8.7, 9.2, 11.1, 10.9, ~
Data summary
| Name |
dat |
| Number of rows |
135 |
| Number of columns |
18 |
| _______________________ |
|
| Column type frequency: |
|
| numeric |
18 |
| ________________________ |
|
| Group variables |
None |
Variable type: numeric
| hour_coded |
0 |
1 |
14.00 |
7.82 |
1.0 |
7.0 |
14 |
21.00 |
27.0 |
▇▇▇▇▇ |
| immobilized_bus |
0 |
1 |
0.34 |
0.66 |
0.0 |
0.0 |
0 |
1.00 |
4.0 |
▇▂▁▁▁ |
| broken_truck |
0 |
1 |
0.87 |
1.10 |
0.0 |
0.0 |
1 |
1.00 |
5.0 |
▇▁▁▁▁ |
| vehicle_excess |
0 |
1 |
0.03 |
0.17 |
0.0 |
0.0 |
0 |
0.00 |
1.0 |
▇▁▁▁▁ |
| accident_victim |
0 |
1 |
0.42 |
0.70 |
0.0 |
0.0 |
0 |
1.00 |
3.0 |
▇▃▁▁▁ |
| running_over |
0 |
1 |
0.12 |
0.35 |
0.0 |
0.0 |
0 |
0.00 |
2.0 |
▇▁▁▁▁ |
| fire_vehicles |
0 |
1 |
0.01 |
0.09 |
0.0 |
0.0 |
0 |
0.00 |
1.0 |
▇▁▁▁▁ |
| occurrence_involving_freight |
0 |
1 |
0.01 |
0.09 |
0.0 |
0.0 |
0 |
0.00 |
1.0 |
▇▁▁▁▁ |
| incident_involving_dangerous_freight |
0 |
1 |
0.01 |
0.09 |
0.0 |
0.0 |
0 |
0.00 |
1.0 |
▇▁▁▁▁ |
| lack_of_electricity |
0 |
1 |
0.12 |
0.50 |
0.0 |
0.0 |
0 |
0.00 |
4.0 |
▇▁▁▁▁ |
| fire |
0 |
1 |
0.01 |
0.09 |
0.0 |
0.0 |
0 |
0.00 |
1.0 |
▇▁▁▁▁ |
| point_of_flooding |
0 |
1 |
0.12 |
0.71 |
0.0 |
0.0 |
0 |
0.00 |
7.0 |
▇▁▁▁▁ |
| manifestations |
0 |
1 |
0.05 |
0.22 |
0.0 |
0.0 |
0 |
0.00 |
1.0 |
▇▁▁▁▁ |
| defect_in_the_network_of_trolleybuses |
0 |
1 |
0.23 |
0.82 |
0.0 |
0.0 |
0 |
0.00 |
8.0 |
▇▁▁▁▁ |
| tree_on_the_road |
0 |
1 |
0.04 |
0.21 |
0.0 |
0.0 |
0 |
0.00 |
1.0 |
▇▁▁▁▁ |
| semaphore_off |
0 |
1 |
0.13 |
0.46 |
0.0 |
0.0 |
0 |
0.00 |
4.0 |
▇▁▁▁▁ |
| intermittent_semaphore |
0 |
1 |
0.01 |
0.12 |
0.0 |
0.0 |
0 |
0.00 |
1.0 |
▇▁▁▁▁ |
| slowness_in_traffic_percent |
0 |
1 |
10.05 |
4.36 |
3.4 |
7.4 |
9 |
11.85 |
23.4 |
▅▇▂▂▁ |

LASSO
## # A tibble: 17 x 3
## term estimate penalty
## <chr> <dbl> <dbl>
## 1 (Intercept) 9.91 0.1
## 2 hour_coded 2.41 0.1
## 3 immobilized_bus 0 0.1
## 4 broken_truck 0 0.1
## 5 vehicle_excess 0 0.1
## 6 accident_victim 0 0.1
## 7 running_over 0 0.1
## 8 occurrence_involving_freight -0.00645 0.1
## 9 incident_involving_dangerous_freight 0 0.1
## 10 lack_of_electricity 0.0621 0.1
## 11 fire 0 0.1
## 12 point_of_flooding 1.13 0.1
## 13 manifestations 0.211 0.1
## 14 defect_in_the_network_of_trolleybuses -0.399 0.1
## 15 tree_on_the_road -0.0969 0.1
## 16 semaphore_off 0.799 0.1
## 17 intermittent_semaphore 0 0.1


## # A tibble: 2 x 4
## .metric .estimator .estimate .config
## <chr> <chr> <dbl> <chr>
## 1 rmse standard 3.06 Preprocessor1_Model1
## 2 rsq standard 0.571 Preprocessor1_Model1
Ridge
## # A tibble: 17 x 3
## term estimate penalty
## <chr> <dbl> <dbl>
## 1 (Intercept) 9.91 0.1
## 2 hour_coded 2.26 0.1
## 3 immobilized_bus 0.106 0.1
## 4 broken_truck -0.0597 0.1
## 5 vehicle_excess 0.00491 0.1
## 6 accident_victim -0.0340 0.1
## 7 running_over -0.0377 0.1
## 8 occurrence_involving_freight -0.205 0.1
## 9 incident_involving_dangerous_freight -0.134 0.1
## 10 lack_of_electricity 0.180 0.1
## 11 fire -0.0705 0.1
## 12 point_of_flooding 1.14 0.1
## 13 manifestations 0.439 0.1
## 14 defect_in_the_network_of_trolleybuses -0.524 0.1
## 15 tree_on_the_road -0.177 0.1
## 16 semaphore_off 0.815 0.1
## 17 intermittent_semaphore -0.109 0.1


## # A tibble: 2 x 4
## .metric .estimator .estimate .config
## <chr> <chr> <dbl> <chr>
## 1 rmse standard 3.08 Preprocessor1_Model1
## 2 rsq standard 0.606 Preprocessor1_Model1
student mat
## Rows: 395
## Columns: 18
## $ sex <chr> "F", "F", "F", "F", "F", "M", "M", "F", "M", "M", "F", "F",~
## $ age <dbl> 18, 17, 15, 15, 16, 16, 16, 17, 15, 15, 15, 15, 15, 15, 15,~
## $ medu <chr> "4", "1", "1", "4", "3", "4", "2", "4", "3", "3", "4", "2",~
## $ fedu <chr> "4", "1", "1", "2", "3", "3", "2", "4", "2", "4", "4", "1",~
## $ studytime <chr> "2", "2", "2", "3", "2", "2", "2", "2", "2", "2", "2", "3",~
## $ failures <chr> "0", "0", "3", "0", "0", "0", "0", "0", "0", "0", "0", "0",~
## $ paid <dbl> 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1,~
## $ activities <dbl> 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1,~
## $ higher <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,~
## $ internet <dbl> 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1,~
## $ romantic <dbl> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,~
## $ famrel <chr> "4", "5", "4", "3", "4", "5", "4", "4", "4", "5", "3", "5",~
## $ freetime <chr> "3", "3", "3", "2", "3", "4", "4", "1", "2", "5", "3", "2",~
## $ health <chr> "3", "3", "3", "5", "5", "5", "3", "1", "1", "5", "2", "4",~
## $ absences <dbl> 6, 4, 10, 2, 4, 10, 0, 6, 0, 0, 0, 4, 2, 2, 0, 4, 6, 4, 16,~
## $ g1 <dbl> 5, 5, 7, 15, 6, 15, 12, 6, 16, 14, 10, 10, 14, 10, 14, 14, ~
## $ g2 <dbl> 6, 5, 8, 14, 10, 15, 12, 5, 18, 15, 8, 12, 14, 10, 16, 14, ~
## $ g3 <dbl> 6, 6, 10, 15, 10, 15, 11, 6, 19, 15, 9, 12, 14, 11, 16, 14,~
Data summary
| Name |
dat |
| Number of rows |
395 |
| Number of columns |
18 |
| _______________________ |
|
| Column type frequency: |
|
| character |
8 |
| numeric |
10 |
| ________________________ |
|
| Group variables |
None |
Variable type: character
| sex |
0 |
1 |
1 |
1 |
0 |
2 |
0 |
| medu |
0 |
1 |
1 |
1 |
0 |
5 |
0 |
| fedu |
0 |
1 |
1 |
1 |
0 |
5 |
0 |
| studytime |
0 |
1 |
1 |
1 |
0 |
4 |
0 |
| failures |
0 |
1 |
1 |
1 |
0 |
4 |
0 |
| famrel |
0 |
1 |
1 |
1 |
0 |
5 |
0 |
| freetime |
0 |
1 |
1 |
1 |
0 |
5 |
0 |
| health |
0 |
1 |
1 |
1 |
0 |
5 |
0 |
Variable type: numeric
| age |
0 |
1 |
16.70 |
1.28 |
15 |
16 |
17 |
18 |
22 |
▇▅▅▁▁ |
| paid |
0 |
1 |
0.46 |
0.50 |
0 |
0 |
0 |
1 |
1 |
▇▁▁▁▇ |
| activities |
0 |
1 |
0.51 |
0.50 |
0 |
0 |
1 |
1 |
1 |
▇▁▁▁▇ |
| higher |
0 |
1 |
0.95 |
0.22 |
0 |
1 |
1 |
1 |
1 |
▁▁▁▁▇ |
| internet |
0 |
1 |
0.83 |
0.37 |
0 |
1 |
1 |
1 |
1 |
▂▁▁▁▇ |
| romantic |
0 |
1 |
0.33 |
0.47 |
0 |
0 |
0 |
1 |
1 |
▇▁▁▁▅ |
| absences |
0 |
1 |
5.71 |
8.00 |
0 |
0 |
4 |
8 |
75 |
▇▁▁▁▁ |
| g1 |
0 |
1 |
10.91 |
3.32 |
3 |
8 |
11 |
13 |
19 |
▂▇▇▆▂ |
| g2 |
0 |
1 |
10.71 |
3.76 |
0 |
9 |
11 |
13 |
19 |
▁▂▇▆▂ |
| g3 |
0 |
1 |
10.42 |
4.58 |
0 |
8 |
11 |
14 |
20 |
▂▃▇▅▁ |

LASSO
## # A tibble: 37 x 3
## term estimate penalty
## <chr> <dbl> <dbl>
## 1 (Intercept) 10.8 0.1
## 2 age -0.128 0.1
## 3 paid 0 0.1
## 4 activities -0.0959 0.1
## 5 higher 0 0.1
## 6 internet 0 0.1
## 7 romantic -0.114 0.1
## 8 absences 0.226 0.1
## 9 g1 0.429 0.1
## 10 g2 3.43 0.1
## # ... with 27 more rows


## # A tibble: 2 x 4
## .metric .estimator .estimate .config
## <chr> <chr> <dbl> <chr>
## 1 rmse standard 1.88 Preprocessor1_Model1
## 2 rsq standard 0.855 Preprocessor1_Model1
Ridge
## # A tibble: 37 x 3
## term estimate penalty
## <chr> <dbl> <dbl>
## 1 (Intercept) 11.4 0.1
## 2 age -0.262 0.1
## 3 paid -0.0120 0.1
## 4 activities -0.194 0.1
## 5 higher -0.108 0.1
## 6 internet 0.0329 0.1
## 7 romantic -0.276 0.1
## 8 absences 0.298 0.1
## 9 g1 1.01 0.1
## 10 g2 2.65 0.1
## # ... with 27 more rows


## # A tibble: 2 x 4
## .metric .estimator .estimate .config
## <chr> <chr> <dbl> <chr>
## 1 rmse standard 2.17 Preprocessor1_Model1
## 2 rsq standard 0.808 Preprocessor1_Model1
student port
## Rows: 649
## Columns: 18
## $ sex <chr> "F", "F", "F", "F", "F", "M", "M", "F", "M", "M", "F", "F",~
## $ age <dbl> 18, 17, 15, 15, 16, 16, 16, 17, 15, 15, 15, 15, 15, 15, 15,~
## $ medu <chr> "4", "1", "1", "4", "3", "4", "2", "4", "3", "3", "4", "2",~
## $ fedu <chr> "4", "1", "1", "2", "3", "3", "2", "4", "2", "4", "4", "1",~
## $ studytime <chr> "2", "2", "2", "3", "2", "2", "2", "2", "2", "2", "2", "3",~
## $ failures <chr> "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",~
## $ paid <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,~
## $ activities <dbl> 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1,~
## $ higher <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,~
## $ internet <dbl> 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1,~
## $ romantic <dbl> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,~
## $ famrel <chr> "4", "5", "4", "3", "4", "5", "4", "4", "4", "5", "3", "5",~
## $ freetime <chr> "3", "3", "3", "2", "3", "4", "4", "1", "2", "5", "3", "2",~
## $ health <chr> "3", "3", "3", "5", "5", "5", "3", "1", "1", "5", "2", "4",~
## $ absences <dbl> 4, 2, 6, 0, 0, 6, 0, 2, 0, 0, 2, 0, 0, 0, 0, 6, 10, 2, 2, 6~
## $ g1 <dbl> 0, 9, 12, 14, 11, 12, 13, 10, 15, 12, 14, 10, 12, 12, 14, 1~
## $ g2 <dbl> 11, 11, 13, 14, 13, 12, 12, 13, 16, 12, 14, 12, 13, 12, 14,~
## $ g3 <dbl> 11, 11, 12, 14, 13, 13, 13, 13, 17, 13, 14, 13, 12, 13, 15,~
Data summary
| Name |
dat |
| Number of rows |
649 |
| Number of columns |
18 |
| _______________________ |
|
| Column type frequency: |
|
| character |
8 |
| numeric |
10 |
| ________________________ |
|
| Group variables |
None |
Variable type: character
| sex |
0 |
1 |
1 |
1 |
0 |
2 |
0 |
| medu |
0 |
1 |
1 |
1 |
0 |
5 |
0 |
| fedu |
0 |
1 |
1 |
1 |
0 |
5 |
0 |
| studytime |
0 |
1 |
1 |
1 |
0 |
4 |
0 |
| failures |
0 |
1 |
1 |
1 |
0 |
4 |
0 |
| famrel |
0 |
1 |
1 |
1 |
0 |
5 |
0 |
| freetime |
0 |
1 |
1 |
1 |
0 |
5 |
0 |
| health |
0 |
1 |
1 |
1 |
0 |
5 |
0 |
Variable type: numeric
| age |
0 |
1 |
16.74 |
1.22 |
15 |
16 |
17 |
18 |
22 |
▇▅▅▁▁ |
| paid |
0 |
1 |
0.06 |
0.24 |
0 |
0 |
0 |
0 |
1 |
▇▁▁▁▁ |
| activities |
0 |
1 |
0.49 |
0.50 |
0 |
0 |
0 |
1 |
1 |
▇▁▁▁▇ |
| higher |
0 |
1 |
0.89 |
0.31 |
0 |
1 |
1 |
1 |
1 |
▁▁▁▁▇ |
| internet |
0 |
1 |
0.77 |
0.42 |
0 |
1 |
1 |
1 |
1 |
▂▁▁▁▇ |
| romantic |
0 |
1 |
0.37 |
0.48 |
0 |
0 |
0 |
1 |
1 |
▇▁▁▁▅ |
| absences |
0 |
1 |
3.66 |
4.64 |
0 |
0 |
2 |
6 |
32 |
▇▂▁▁▁ |
| g1 |
0 |
1 |
11.40 |
2.75 |
0 |
10 |
11 |
13 |
19 |
▁▂▇▇▁ |
| g2 |
0 |
1 |
11.57 |
2.91 |
0 |
10 |
11 |
13 |
19 |
▁▁▇▇▂ |
| g3 |
0 |
1 |
11.91 |
3.23 |
0 |
10 |
12 |
14 |
19 |
▁▁▇▇▂ |

LASSO
## # A tibble: 37 x 3
## term estimate penalty
## <chr> <dbl> <dbl>
## 1 (Intercept) 12.1 0.1
## 2 age 0 0.1
## 3 paid 0 0.1
## 4 activities 0 0.1
## 5 higher 0 0.1
## 6 internet 0 0.1
## 7 romantic 0 0.1
## 8 absences 0 0.1
## 9 g1 0.344 0.1
## 10 g2 2.33 0.1
## # ... with 27 more rows


## # A tibble: 2 x 4
## .metric .estimator .estimate .config
## <chr> <chr> <dbl> <chr>
## 1 rmse standard 1.27 Preprocessor1_Model1
## 2 rsq standard 0.887 Preprocessor1_Model1
Ridge
## # A tibble: 37 x 3
## term estimate penalty
## <chr> <dbl> <dbl>
## 1 (Intercept) 12.3 0.1
## 2 age 0.127 0.1
## 3 paid -0.0613 0.1
## 4 activities 0.0128 0.1
## 5 higher 0.0769 0.1
## 6 internet 0.0310 0.1
## 7 romantic -0.0826 0.1
## 8 absences 0.0919 0.1
## 9 g1 0.713 0.1
## 10 g2 1.79 0.1
## # ... with 27 more rows


## # A tibble: 2 x 4
## .metric .estimator .estimate .config
## <chr> <chr> <dbl> <chr>
## 1 rmse standard 1.35 Preprocessor1_Model1
## 2 rsq standard 0.874 Preprocessor1_Model1
coffee
## Rows: 1,108
## Columns: 16
## $ total_cup_points <dbl> 90.58, 89.92, 89.75, 89.00, 88.83, 88.67, 88.42, ~
## $ aroma <dbl> 8.67, 8.75, 8.42, 8.17, 8.25, 8.25, 8.67, 8.08, 8~
## $ flavor <dbl> 8.83, 8.67, 8.50, 8.58, 8.50, 8.33, 8.67, 8.58, 8~
## $ aftertaste <dbl> 8.67, 8.50, 8.42, 8.42, 8.25, 8.50, 8.58, 8.50, 8~
## $ acidity <dbl> 8.75, 8.58, 8.42, 8.42, 8.50, 8.42, 8.42, 8.50, 8~
## $ body <dbl> 8.50, 8.42, 8.33, 8.50, 8.42, 8.33, 8.33, 7.67, 7~
## $ balance <dbl> 8.42, 8.42, 8.42, 8.25, 8.33, 8.50, 8.42, 8.42, 8~
## $ uniformity <dbl> 10.00, 10.00, 10.00, 10.00, 10.00, 10.00, 9.33, 1~
## $ clean_cup <dbl> 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1~
## $ sweetness <dbl> 10.00, 10.00, 10.00, 10.00, 10.00, 9.33, 9.33, 10~
## $ cupper_points <dbl> 8.75, 8.58, 9.25, 8.67, 8.58, 9.00, 8.67, 8.50, 8~
## $ moisture <dbl> 0.12, 0.12, 0.00, 0.11, 0.12, 0.03, 0.03, 0.10, 0~
## $ category_one_defects <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0~
## $ quakers <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0~
## $ category_two_defects <dbl> 0, 1, 0, 2, 2, 0, 0, 4, 1, 0, 0, 2, 2, 0, 0, 0, 8~
## $ altitude_mean_meters <dbl> 2075.0, 2075.0, 1700.0, 2000.0, 2075.0, 1635.0, 1~
Data summary
| Name |
dat |
| Number of rows |
1108 |
| Number of columns |
16 |
| _______________________ |
|
| Column type frequency: |
|
| numeric |
16 |
| ________________________ |
|
| Group variables |
None |
Variable type: numeric
| total_cup_points |
0 |
1 |
82.11 |
3.60 |
0 |
81.17 |
82.50 |
83.58 |
90.58 |
▁▁▁▁▇ |
| aroma |
0 |
1 |
7.57 |
0.38 |
0 |
7.42 |
7.58 |
7.75 |
8.75 |
▁▁▁▁▇ |
| flavor |
0 |
1 |
7.52 |
0.40 |
0 |
7.33 |
7.58 |
7.75 |
8.83 |
▁▁▁▁▇ |
| aftertaste |
0 |
1 |
7.39 |
0.41 |
0 |
7.25 |
7.42 |
7.58 |
8.67 |
▁▁▁▁▇ |
| acidity |
0 |
1 |
7.53 |
0.39 |
0 |
7.33 |
7.50 |
7.75 |
8.75 |
▁▁▁▁▇ |
| body |
0 |
1 |
7.51 |
0.37 |
0 |
7.33 |
7.50 |
7.67 |
8.58 |
▁▁▁▁▇ |
| balance |
0 |
1 |
7.51 |
0.42 |
0 |
7.33 |
7.50 |
7.75 |
8.75 |
▁▁▁▁▇ |
| uniformity |
0 |
1 |
9.87 |
0.52 |
0 |
10.00 |
10.00 |
10.00 |
10.00 |
▁▁▁▁▇ |
| clean_cup |
0 |
1 |
9.85 |
0.78 |
0 |
10.00 |
10.00 |
10.00 |
10.00 |
▁▁▁▁▇ |
| sweetness |
0 |
1 |
9.87 |
0.60 |
0 |
10.00 |
10.00 |
10.00 |
10.00 |
▁▁▁▁▇ |
| cupper_points |
0 |
1 |
7.49 |
0.47 |
0 |
7.25 |
7.50 |
7.75 |
10.00 |
▁▁▁▇▁ |
| moisture |
0 |
1 |
0.09 |
0.05 |
0 |
0.10 |
0.11 |
0.12 |
0.20 |
▂▁▇▁▁ |
| category_one_defects |
0 |
1 |
0.37 |
1.85 |
0 |
0.00 |
0.00 |
0.00 |
31.00 |
▇▁▁▁▁ |
| quakers |
0 |
1 |
0.14 |
0.72 |
0 |
0.00 |
0.00 |
0.00 |
11.00 |
▇▁▁▁▁ |
| category_two_defects |
0 |
1 |
3.54 |
5.27 |
0 |
0.00 |
2.00 |
4.00 |
47.00 |
▇▁▁▁▁ |
| altitude_mean_meters |
0 |
1 |
1775.05 |
8672.54 |
1 |
1100.00 |
1310.64 |
1600.00 |
190164.00 |
▇▁▁▁▁ |

LASSO
## # A tibble: 16 x 3
## term estimate penalty
## <chr> <dbl> <dbl>
## 1 (Intercept) 82.0 0.1
## 2 aroma 0.379 0.1
## 3 flavor 0.463 0.1
## 4 aftertaste 0.451 0.1
## 5 acidity 0.384 0.1
## 6 body 0.371 0.1
## 7 balance 0.446 0.1
## 8 uniformity 0.540 0.1
## 9 clean_cup 0.721 0.1
## 10 sweetness 0.525 0.1
## 11 cupper_points 0.445 0.1
## 12 moisture 0 0.1
## 13 category_one_defects 0 0.1
## 14 quakers 0 0.1
## 15 category_two_defects 0 0.1
## 16 altitude_mean_meters 0 0.1


## # A tibble: 2 x 4
## .metric .estimator .estimate .config
## <chr> <chr> <dbl> <chr>
## 1 rmse standard 0.0906 Preprocessor1_Model1
## 2 rsq standard 1.00 Preprocessor1_Model1
Ridge
## # A tibble: 16 x 3
## term estimate penalty
## <chr> <dbl> <dbl>
## 1 (Intercept) 82.0 0.1
## 2 aroma 0.406 0.1
## 3 flavor 0.442 0.1
## 4 aftertaste 0.443 0.1
## 5 acidity 0.407 0.1
## 6 body 0.400 0.1
## 7 balance 0.440 0.1
## 8 uniformity 0.540 0.1
## 9 clean_cup 0.684 0.1
## 10 sweetness 0.536 0.1
## 11 cupper_points 0.453 0.1
## 12 moisture -0.00269 0.1
## 13 category_one_defects -0.0122 0.1
## 14 quakers 0.00430 0.1
## 15 category_two_defects -0.0159 0.1
## 16 altitude_mean_meters -0.00190 0.1


## # A tibble: 2 x 4
## .metric .estimator .estimate .config
## <chr> <chr> <dbl> <chr>
## 1 rmse standard 0.123 Preprocessor1_Model1
## 2 rsq standard 0.999 Preprocessor1_Model1
syncronous machine
## Rows: 557
## Columns: 5
## $ iy <dbl> 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,~
## $ pf <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,~
## $ e <dbl> 66, 68, 7, 72, 74, 76, 78, 8, 82, 84, 86, 88, 9, 92, 94, 96, 9~
## $ d_if <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 66, 68, ~
## $ if_sinc <dbl> 34, 32, 3, 28, 26, 24, 22, 2, 18, 16, 14, 12, 1, 8, 6, 4, 2, 3~
Data summary
| Name |
dat |
| Number of rows |
557 |
| Number of columns |
5 |
| _______________________ |
|
| Column type frequency: |
|
| numeric |
5 |
| ________________________ |
|
| Group variables |
None |
Variable type: numeric
| iy |
0 |
1 |
4.06 |
0.88 |
3 |
3 |
4 |
5 |
6 |
▇▇▁▇▁ |
| pf |
0 |
1 |
4.36 |
2.94 |
0 |
2 |
4 |
7 |
9 |
▇▇▇▇▇ |
| e |
0 |
1 |
9.55 |
26.44 |
0 |
0 |
0 |
0 |
99 |
▇▁▁▁▁ |
| d_if |
0 |
1 |
63.68 |
34.90 |
0 |
65 |
77 |
88 |
99 |
▅▁▁▆▇ |
| if_sinc |
0 |
1 |
2.27 |
7.51 |
0 |
0 |
0 |
0 |
76 |
▇▁▁▁▁ |

LASSO
## # A tibble: 5 x 3
## term estimate penalty
## <chr> <dbl> <dbl>
## 1 (Intercept) 2.10 0.1
## 2 iy 0.224 0.1
## 3 pf -0.597 0.1
## 4 e 3.66 0.1
## 5 d_if -1.31 0.1


## # A tibble: 2 x 4
## .metric .estimator .estimate .config
## <chr> <chr> <dbl> <chr>
## 1 rmse standard 5.40 Preprocessor1_Model1
## 2 rsq standard 0.522 Preprocessor1_Model1
Ridge
## # A tibble: 5 x 3
## term estimate penalty
## <chr> <dbl> <dbl>
## 1 (Intercept) 2.10 0.1
## 2 iy 0.369 0.1
## 3 pf -0.734 0.1
## 4 e 3.33 0.1
## 5 d_if -1.47 0.1


## # A tibble: 2 x 4
## .metric .estimator .estimate .config
## <chr> <chr> <dbl> <chr>
## 1 rmse standard 5.40 Preprocessor1_Model1
## 2 rsq standard 0.523 Preprocessor1_Model1