urban traffic

## Rows: 135
## Columns: 18
## $ hour_coded                            <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1~
## $ immobilized_bus                       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
## $ broken_truck                          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
## $ vehicle_excess                        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
## $ accident_victim                       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
## $ running_over                          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
## $ fire_vehicles                         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
## $ occurrence_involving_freight          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
## $ incident_involving_dangerous_freight  <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
## $ lack_of_electricity                   <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
## $ fire                                  <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
## $ point_of_flooding                     <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
## $ manifestations                        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
## $ defect_in_the_network_of_trolleybuses <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
## $ tree_on_the_road                      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
## $ semaphore_off                         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
## $ intermittent_semaphore                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
## $ slowness_in_traffic_percent           <dbl> 4.1, 6.6, 8.7, 9.2, 11.1, 10.9, ~
Data summary
Name dat
Number of rows 135
Number of columns 18
_______________________
Column type frequency:
numeric 18
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
hour_coded 0 1 14.00 7.82 1.0 7.0 14 21.00 27.0 ▇▇▇▇▇
immobilized_bus 0 1 0.34 0.66 0.0 0.0 0 1.00 4.0 ▇▂▁▁▁
broken_truck 0 1 0.87 1.10 0.0 0.0 1 1.00 5.0 ▇▁▁▁▁
vehicle_excess 0 1 0.03 0.17 0.0 0.0 0 0.00 1.0 ▇▁▁▁▁
accident_victim 0 1 0.42 0.70 0.0 0.0 0 1.00 3.0 ▇▃▁▁▁
running_over 0 1 0.12 0.35 0.0 0.0 0 0.00 2.0 ▇▁▁▁▁
fire_vehicles 0 1 0.01 0.09 0.0 0.0 0 0.00 1.0 ▇▁▁▁▁
occurrence_involving_freight 0 1 0.01 0.09 0.0 0.0 0 0.00 1.0 ▇▁▁▁▁
incident_involving_dangerous_freight 0 1 0.01 0.09 0.0 0.0 0 0.00 1.0 ▇▁▁▁▁
lack_of_electricity 0 1 0.12 0.50 0.0 0.0 0 0.00 4.0 ▇▁▁▁▁
fire 0 1 0.01 0.09 0.0 0.0 0 0.00 1.0 ▇▁▁▁▁
point_of_flooding 0 1 0.12 0.71 0.0 0.0 0 0.00 7.0 ▇▁▁▁▁
manifestations 0 1 0.05 0.22 0.0 0.0 0 0.00 1.0 ▇▁▁▁▁
defect_in_the_network_of_trolleybuses 0 1 0.23 0.82 0.0 0.0 0 0.00 8.0 ▇▁▁▁▁
tree_on_the_road 0 1 0.04 0.21 0.0 0.0 0 0.00 1.0 ▇▁▁▁▁
semaphore_off 0 1 0.13 0.46 0.0 0.0 0 0.00 4.0 ▇▁▁▁▁
intermittent_semaphore 0 1 0.01 0.12 0.0 0.0 0 0.00 1.0 ▇▁▁▁▁
slowness_in_traffic_percent 0 1 10.05 4.36 3.4 7.4 9 11.85 23.4 ▅▇▂▂▁

LASSO

## # A tibble: 17 x 3
##    term                                  estimate penalty
##    <chr>                                    <dbl>   <dbl>
##  1 (Intercept)                            9.91        0.1
##  2 hour_coded                             2.41        0.1
##  3 immobilized_bus                        0           0.1
##  4 broken_truck                           0           0.1
##  5 vehicle_excess                         0           0.1
##  6 accident_victim                        0           0.1
##  7 running_over                           0           0.1
##  8 occurrence_involving_freight          -0.00645     0.1
##  9 incident_involving_dangerous_freight   0           0.1
## 10 lack_of_electricity                    0.0621      0.1
## 11 fire                                   0           0.1
## 12 point_of_flooding                      1.13        0.1
## 13 manifestations                         0.211       0.1
## 14 defect_in_the_network_of_trolleybuses -0.399       0.1
## 15 tree_on_the_road                      -0.0969      0.1
## 16 semaphore_off                          0.799       0.1
## 17 intermittent_semaphore                 0           0.1

## # A tibble: 2 x 4
##   .metric .estimator .estimate .config             
##   <chr>   <chr>          <dbl> <chr>               
## 1 rmse    standard       3.06  Preprocessor1_Model1
## 2 rsq     standard       0.571 Preprocessor1_Model1

Ridge

## # A tibble: 17 x 3
##    term                                  estimate penalty
##    <chr>                                    <dbl>   <dbl>
##  1 (Intercept)                            9.91        0.1
##  2 hour_coded                             2.26        0.1
##  3 immobilized_bus                        0.106       0.1
##  4 broken_truck                          -0.0597      0.1
##  5 vehicle_excess                         0.00491     0.1
##  6 accident_victim                       -0.0340      0.1
##  7 running_over                          -0.0377      0.1
##  8 occurrence_involving_freight          -0.205       0.1
##  9 incident_involving_dangerous_freight  -0.134       0.1
## 10 lack_of_electricity                    0.180       0.1
## 11 fire                                  -0.0705      0.1
## 12 point_of_flooding                      1.14        0.1
## 13 manifestations                         0.439       0.1
## 14 defect_in_the_network_of_trolleybuses -0.524       0.1
## 15 tree_on_the_road                      -0.177       0.1
## 16 semaphore_off                          0.815       0.1
## 17 intermittent_semaphore                -0.109       0.1

## # A tibble: 2 x 4
##   .metric .estimator .estimate .config             
##   <chr>   <chr>          <dbl> <chr>               
## 1 rmse    standard       3.08  Preprocessor1_Model1
## 2 rsq     standard       0.606 Preprocessor1_Model1

student mat

## Rows: 395
## Columns: 18
## $ sex        <chr> "F", "F", "F", "F", "F", "M", "M", "F", "M", "M", "F", "F",~
## $ age        <dbl> 18, 17, 15, 15, 16, 16, 16, 17, 15, 15, 15, 15, 15, 15, 15,~
## $ medu       <chr> "4", "1", "1", "4", "3", "4", "2", "4", "3", "3", "4", "2",~
## $ fedu       <chr> "4", "1", "1", "2", "3", "3", "2", "4", "2", "4", "4", "1",~
## $ studytime  <chr> "2", "2", "2", "3", "2", "2", "2", "2", "2", "2", "2", "3",~
## $ failures   <chr> "0", "0", "3", "0", "0", "0", "0", "0", "0", "0", "0", "0",~
## $ paid       <dbl> 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1,~
## $ activities <dbl> 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1,~
## $ higher     <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,~
## $ internet   <dbl> 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1,~
## $ romantic   <dbl> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,~
## $ famrel     <chr> "4", "5", "4", "3", "4", "5", "4", "4", "4", "5", "3", "5",~
## $ freetime   <chr> "3", "3", "3", "2", "3", "4", "4", "1", "2", "5", "3", "2",~
## $ health     <chr> "3", "3", "3", "5", "5", "5", "3", "1", "1", "5", "2", "4",~
## $ absences   <dbl> 6, 4, 10, 2, 4, 10, 0, 6, 0, 0, 0, 4, 2, 2, 0, 4, 6, 4, 16,~
## $ g1         <dbl> 5, 5, 7, 15, 6, 15, 12, 6, 16, 14, 10, 10, 14, 10, 14, 14, ~
## $ g2         <dbl> 6, 5, 8, 14, 10, 15, 12, 5, 18, 15, 8, 12, 14, 10, 16, 14, ~
## $ g3         <dbl> 6, 6, 10, 15, 10, 15, 11, 6, 19, 15, 9, 12, 14, 11, 16, 14,~
Data summary
Name dat
Number of rows 395
Number of columns 18
_______________________
Column type frequency:
character 8
numeric 10
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
sex 0 1 1 1 0 2 0
medu 0 1 1 1 0 5 0
fedu 0 1 1 1 0 5 0
studytime 0 1 1 1 0 4 0
failures 0 1 1 1 0 4 0
famrel 0 1 1 1 0 5 0
freetime 0 1 1 1 0 5 0
health 0 1 1 1 0 5 0

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
age 0 1 16.70 1.28 15 16 17 18 22 ▇▅▅▁▁
paid 0 1 0.46 0.50 0 0 0 1 1 ▇▁▁▁▇
activities 0 1 0.51 0.50 0 0 1 1 1 ▇▁▁▁▇
higher 0 1 0.95 0.22 0 1 1 1 1 ▁▁▁▁▇
internet 0 1 0.83 0.37 0 1 1 1 1 ▂▁▁▁▇
romantic 0 1 0.33 0.47 0 0 0 1 1 ▇▁▁▁▅
absences 0 1 5.71 8.00 0 0 4 8 75 ▇▁▁▁▁
g1 0 1 10.91 3.32 3 8 11 13 19 ▂▇▇▆▂
g2 0 1 10.71 3.76 0 9 11 13 19 ▁▂▇▆▂
g3 0 1 10.42 4.58 0 8 11 14 20 ▂▃▇▅▁

LASSO

## # A tibble: 37 x 3
##    term        estimate penalty
##    <chr>          <dbl>   <dbl>
##  1 (Intercept)  10.8        0.1
##  2 age          -0.128      0.1
##  3 paid          0          0.1
##  4 activities   -0.0959     0.1
##  5 higher        0          0.1
##  6 internet      0          0.1
##  7 romantic     -0.114      0.1
##  8 absences      0.226      0.1
##  9 g1            0.429      0.1
## 10 g2            3.43       0.1
## # ... with 27 more rows

## # A tibble: 2 x 4
##   .metric .estimator .estimate .config             
##   <chr>   <chr>          <dbl> <chr>               
## 1 rmse    standard       1.88  Preprocessor1_Model1
## 2 rsq     standard       0.855 Preprocessor1_Model1

Ridge

## # A tibble: 37 x 3
##    term        estimate penalty
##    <chr>          <dbl>   <dbl>
##  1 (Intercept)  11.4        0.1
##  2 age          -0.262      0.1
##  3 paid         -0.0120     0.1
##  4 activities   -0.194      0.1
##  5 higher       -0.108      0.1
##  6 internet      0.0329     0.1
##  7 romantic     -0.276      0.1
##  8 absences      0.298      0.1
##  9 g1            1.01       0.1
## 10 g2            2.65       0.1
## # ... with 27 more rows

## # A tibble: 2 x 4
##   .metric .estimator .estimate .config             
##   <chr>   <chr>          <dbl> <chr>               
## 1 rmse    standard       2.17  Preprocessor1_Model1
## 2 rsq     standard       0.808 Preprocessor1_Model1

student port

## Rows: 649
## Columns: 18
## $ sex        <chr> "F", "F", "F", "F", "F", "M", "M", "F", "M", "M", "F", "F",~
## $ age        <dbl> 18, 17, 15, 15, 16, 16, 16, 17, 15, 15, 15, 15, 15, 15, 15,~
## $ medu       <chr> "4", "1", "1", "4", "3", "4", "2", "4", "3", "3", "4", "2",~
## $ fedu       <chr> "4", "1", "1", "2", "3", "3", "2", "4", "2", "4", "4", "1",~
## $ studytime  <chr> "2", "2", "2", "3", "2", "2", "2", "2", "2", "2", "2", "3",~
## $ failures   <chr> "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",~
## $ paid       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,~
## $ activities <dbl> 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1,~
## $ higher     <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,~
## $ internet   <dbl> 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1,~
## $ romantic   <dbl> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,~
## $ famrel     <chr> "4", "5", "4", "3", "4", "5", "4", "4", "4", "5", "3", "5",~
## $ freetime   <chr> "3", "3", "3", "2", "3", "4", "4", "1", "2", "5", "3", "2",~
## $ health     <chr> "3", "3", "3", "5", "5", "5", "3", "1", "1", "5", "2", "4",~
## $ absences   <dbl> 4, 2, 6, 0, 0, 6, 0, 2, 0, 0, 2, 0, 0, 0, 0, 6, 10, 2, 2, 6~
## $ g1         <dbl> 0, 9, 12, 14, 11, 12, 13, 10, 15, 12, 14, 10, 12, 12, 14, 1~
## $ g2         <dbl> 11, 11, 13, 14, 13, 12, 12, 13, 16, 12, 14, 12, 13, 12, 14,~
## $ g3         <dbl> 11, 11, 12, 14, 13, 13, 13, 13, 17, 13, 14, 13, 12, 13, 15,~
Data summary
Name dat
Number of rows 649
Number of columns 18
_______________________
Column type frequency:
character 8
numeric 10
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
sex 0 1 1 1 0 2 0
medu 0 1 1 1 0 5 0
fedu 0 1 1 1 0 5 0
studytime 0 1 1 1 0 4 0
failures 0 1 1 1 0 4 0
famrel 0 1 1 1 0 5 0
freetime 0 1 1 1 0 5 0
health 0 1 1 1 0 5 0

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
age 0 1 16.74 1.22 15 16 17 18 22 ▇▅▅▁▁
paid 0 1 0.06 0.24 0 0 0 0 1 ▇▁▁▁▁
activities 0 1 0.49 0.50 0 0 0 1 1 ▇▁▁▁▇
higher 0 1 0.89 0.31 0 1 1 1 1 ▁▁▁▁▇
internet 0 1 0.77 0.42 0 1 1 1 1 ▂▁▁▁▇
romantic 0 1 0.37 0.48 0 0 0 1 1 ▇▁▁▁▅
absences 0 1 3.66 4.64 0 0 2 6 32 ▇▂▁▁▁
g1 0 1 11.40 2.75 0 10 11 13 19 ▁▂▇▇▁
g2 0 1 11.57 2.91 0 10 11 13 19 ▁▁▇▇▂
g3 0 1 11.91 3.23 0 10 12 14 19 ▁▁▇▇▂

LASSO

## # A tibble: 37 x 3
##    term        estimate penalty
##    <chr>          <dbl>   <dbl>
##  1 (Intercept)   12.1       0.1
##  2 age            0         0.1
##  3 paid           0         0.1
##  4 activities     0         0.1
##  5 higher         0         0.1
##  6 internet       0         0.1
##  7 romantic       0         0.1
##  8 absences       0         0.1
##  9 g1             0.344     0.1
## 10 g2             2.33      0.1
## # ... with 27 more rows

## # A tibble: 2 x 4
##   .metric .estimator .estimate .config             
##   <chr>   <chr>          <dbl> <chr>               
## 1 rmse    standard       1.27  Preprocessor1_Model1
## 2 rsq     standard       0.887 Preprocessor1_Model1

Ridge

## # A tibble: 37 x 3
##    term        estimate penalty
##    <chr>          <dbl>   <dbl>
##  1 (Intercept)  12.3        0.1
##  2 age           0.127      0.1
##  3 paid         -0.0613     0.1
##  4 activities    0.0128     0.1
##  5 higher        0.0769     0.1
##  6 internet      0.0310     0.1
##  7 romantic     -0.0826     0.1
##  8 absences      0.0919     0.1
##  9 g1            0.713      0.1
## 10 g2            1.79       0.1
## # ... with 27 more rows

## # A tibble: 2 x 4
##   .metric .estimator .estimate .config             
##   <chr>   <chr>          <dbl> <chr>               
## 1 rmse    standard       1.35  Preprocessor1_Model1
## 2 rsq     standard       0.874 Preprocessor1_Model1

coffee

## Rows: 1,108
## Columns: 16
## $ total_cup_points     <dbl> 90.58, 89.92, 89.75, 89.00, 88.83, 88.67, 88.42, ~
## $ aroma                <dbl> 8.67, 8.75, 8.42, 8.17, 8.25, 8.25, 8.67, 8.08, 8~
## $ flavor               <dbl> 8.83, 8.67, 8.50, 8.58, 8.50, 8.33, 8.67, 8.58, 8~
## $ aftertaste           <dbl> 8.67, 8.50, 8.42, 8.42, 8.25, 8.50, 8.58, 8.50, 8~
## $ acidity              <dbl> 8.75, 8.58, 8.42, 8.42, 8.50, 8.42, 8.42, 8.50, 8~
## $ body                 <dbl> 8.50, 8.42, 8.33, 8.50, 8.42, 8.33, 8.33, 7.67, 7~
## $ balance              <dbl> 8.42, 8.42, 8.42, 8.25, 8.33, 8.50, 8.42, 8.42, 8~
## $ uniformity           <dbl> 10.00, 10.00, 10.00, 10.00, 10.00, 10.00, 9.33, 1~
## $ clean_cup            <dbl> 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1~
## $ sweetness            <dbl> 10.00, 10.00, 10.00, 10.00, 10.00, 9.33, 9.33, 10~
## $ cupper_points        <dbl> 8.75, 8.58, 9.25, 8.67, 8.58, 9.00, 8.67, 8.50, 8~
## $ moisture             <dbl> 0.12, 0.12, 0.00, 0.11, 0.12, 0.03, 0.03, 0.10, 0~
## $ category_one_defects <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0~
## $ quakers              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0~
## $ category_two_defects <dbl> 0, 1, 0, 2, 2, 0, 0, 4, 1, 0, 0, 2, 2, 0, 0, 0, 8~
## $ altitude_mean_meters <dbl> 2075.0, 2075.0, 1700.0, 2000.0, 2075.0, 1635.0, 1~
Data summary
Name dat
Number of rows 1108
Number of columns 16
_______________________
Column type frequency:
numeric 16
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
total_cup_points 0 1 82.11 3.60 0 81.17 82.50 83.58 90.58 ▁▁▁▁▇
aroma 0 1 7.57 0.38 0 7.42 7.58 7.75 8.75 ▁▁▁▁▇
flavor 0 1 7.52 0.40 0 7.33 7.58 7.75 8.83 ▁▁▁▁▇
aftertaste 0 1 7.39 0.41 0 7.25 7.42 7.58 8.67 ▁▁▁▁▇
acidity 0 1 7.53 0.39 0 7.33 7.50 7.75 8.75 ▁▁▁▁▇
body 0 1 7.51 0.37 0 7.33 7.50 7.67 8.58 ▁▁▁▁▇
balance 0 1 7.51 0.42 0 7.33 7.50 7.75 8.75 ▁▁▁▁▇
uniformity 0 1 9.87 0.52 0 10.00 10.00 10.00 10.00 ▁▁▁▁▇
clean_cup 0 1 9.85 0.78 0 10.00 10.00 10.00 10.00 ▁▁▁▁▇
sweetness 0 1 9.87 0.60 0 10.00 10.00 10.00 10.00 ▁▁▁▁▇
cupper_points 0 1 7.49 0.47 0 7.25 7.50 7.75 10.00 ▁▁▁▇▁
moisture 0 1 0.09 0.05 0 0.10 0.11 0.12 0.20 ▂▁▇▁▁
category_one_defects 0 1 0.37 1.85 0 0.00 0.00 0.00 31.00 ▇▁▁▁▁
quakers 0 1 0.14 0.72 0 0.00 0.00 0.00 11.00 ▇▁▁▁▁
category_two_defects 0 1 3.54 5.27 0 0.00 2.00 4.00 47.00 ▇▁▁▁▁
altitude_mean_meters 0 1 1775.05 8672.54 1 1100.00 1310.64 1600.00 190164.00 ▇▁▁▁▁

LASSO

## # A tibble: 16 x 3
##    term                 estimate penalty
##    <chr>                   <dbl>   <dbl>
##  1 (Intercept)            82.0       0.1
##  2 aroma                   0.379     0.1
##  3 flavor                  0.463     0.1
##  4 aftertaste              0.451     0.1
##  5 acidity                 0.384     0.1
##  6 body                    0.371     0.1
##  7 balance                 0.446     0.1
##  8 uniformity              0.540     0.1
##  9 clean_cup               0.721     0.1
## 10 sweetness               0.525     0.1
## 11 cupper_points           0.445     0.1
## 12 moisture                0         0.1
## 13 category_one_defects    0         0.1
## 14 quakers                 0         0.1
## 15 category_two_defects    0         0.1
## 16 altitude_mean_meters    0         0.1

## # A tibble: 2 x 4
##   .metric .estimator .estimate .config             
##   <chr>   <chr>          <dbl> <chr>               
## 1 rmse    standard      0.0906 Preprocessor1_Model1
## 2 rsq     standard      1.00   Preprocessor1_Model1

Ridge

## # A tibble: 16 x 3
##    term                 estimate penalty
##    <chr>                   <dbl>   <dbl>
##  1 (Intercept)          82.0         0.1
##  2 aroma                 0.406       0.1
##  3 flavor                0.442       0.1
##  4 aftertaste            0.443       0.1
##  5 acidity               0.407       0.1
##  6 body                  0.400       0.1
##  7 balance               0.440       0.1
##  8 uniformity            0.540       0.1
##  9 clean_cup             0.684       0.1
## 10 sweetness             0.536       0.1
## 11 cupper_points         0.453       0.1
## 12 moisture             -0.00269     0.1
## 13 category_one_defects -0.0122      0.1
## 14 quakers               0.00430     0.1
## 15 category_two_defects -0.0159      0.1
## 16 altitude_mean_meters -0.00190     0.1

## # A tibble: 2 x 4
##   .metric .estimator .estimate .config             
##   <chr>   <chr>          <dbl> <chr>               
## 1 rmse    standard       0.123 Preprocessor1_Model1
## 2 rsq     standard       0.999 Preprocessor1_Model1

syncronous machine

## Rows: 557
## Columns: 5
## $ iy      <dbl> 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,~
## $ pf      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,~
## $ e       <dbl> 66, 68, 7, 72, 74, 76, 78, 8, 82, 84, 86, 88, 9, 92, 94, 96, 9~
## $ d_if    <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 66, 68, ~
## $ if_sinc <dbl> 34, 32, 3, 28, 26, 24, 22, 2, 18, 16, 14, 12, 1, 8, 6, 4, 2, 3~
Data summary
Name dat
Number of rows 557
Number of columns 5
_______________________
Column type frequency:
numeric 5
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
iy 0 1 4.06 0.88 3 3 4 5 6 ▇▇▁▇▁
pf 0 1 4.36 2.94 0 2 4 7 9 ▇▇▇▇▇
e 0 1 9.55 26.44 0 0 0 0 99 ▇▁▁▁▁
d_if 0 1 63.68 34.90 0 65 77 88 99 ▅▁▁▆▇
if_sinc 0 1 2.27 7.51 0 0 0 0 76 ▇▁▁▁▁

LASSO

## # A tibble: 5 x 3
##   term        estimate penalty
##   <chr>          <dbl>   <dbl>
## 1 (Intercept)    2.10      0.1
## 2 iy             0.224     0.1
## 3 pf            -0.597     0.1
## 4 e              3.66      0.1
## 5 d_if          -1.31      0.1

## # A tibble: 2 x 4
##   .metric .estimator .estimate .config             
##   <chr>   <chr>          <dbl> <chr>               
## 1 rmse    standard       5.40  Preprocessor1_Model1
## 2 rsq     standard       0.522 Preprocessor1_Model1

Ridge

## # A tibble: 5 x 3
##   term        estimate penalty
##   <chr>          <dbl>   <dbl>
## 1 (Intercept)    2.10      0.1
## 2 iy             0.369     0.1
## 3 pf            -0.734     0.1
## 4 e              3.33      0.1
## 5 d_if          -1.47      0.1

## # A tibble: 2 x 4
##   .metric .estimator .estimate .config             
##   <chr>   <chr>          <dbl> <chr>               
## 1 rmse    standard       5.40  Preprocessor1_Model1
## 2 rsq     standard       0.523 Preprocessor1_Model1