install.packages(tidyverse) install.packages(tinytex) install.packages(knitr) install.packages(flexdashboard) install.packages(xaringan) install.packages(xaringanthemer)
library("tidyverse")
## Warning: package 'tidyverse' was built under R version 4.1.2
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5 v purrr 0.3.4
## v tibble 3.1.3 v dplyr 1.0.7
## v tidyr 1.1.3 v stringr 1.4.0
## v readr 2.0.1 v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library("tinytex")
## Warning: package 'tinytex' was built under R version 4.1.2
library("knitr")
library("flexdashboard")
## Warning: package 'flexdashboard' was built under R version 4.1.2
library("xaringan")
## Warning: package 'xaringan' was built under R version 4.1.2
library("xaringanthemer")
Corrija os problemas de códigos nos respectivos chunks.
Rode o arquivo .Rmd por meio do ícone knitr
Salve o .Rmd e submeta-o por meio da tarefa no Sigaa.
Dica: As barras que delimitam o endereçamento do arquivo no seu computador, quando exibidas no explorer do Windows, são invertidas (). O R trabalha com barras normais (/) para endereçamento.
Carregue o data frame mtcars
data(mtcars)
Q1)
head(mtcars)
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
Q2)
str(mtcars)
## 'data.frame': 32 obs. of 11 variables:
## $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
## $ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
## $ disp: num 160 160 108 258 360 ...
## $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
## $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
## $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
## $ qsec: num 16.5 17 18.6 19.4 17 ...
## $ vs : num 0 0 1 1 0 1 0 1 1 1 ...
## $ am : num 1 1 1 0 0 0 0 0 0 0 ...
## $ gear: num 4 4 4 3 3 3 3 4 4 4 ...
## $ carb: num 4 4 1 1 2 1 4 2 2 4 ...
Q3)
dim(mtcars)
## [1] 32 11
Q4)
names(mtcars)
## [1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs" "am" "gear"
## [11] "carb"
Q5)
head(mtcars, 7)
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
## Duster 360 14.3 8 360 245 3.21 3.570 15.84 0 0 3 4
Q6)
v1 <- c("pato", "cachorro", "minhoca", "lagarto")
Q7)
v2 <- c("1", "2", "3", "4")
v1[5] <- c("gaivota")
Q8)
v1 <- c("pato", "cachorro", "minhoca", "lagarto")
Q9)
v3 <- c(33, 31, 40, 25, 27, 40)
Q10)
v1 <- c("pato", "cachorro", "minhoca", "lagarto")
Q11)
v1 <- c("pato", "cachorro", "minhoca", "lagarto")
Q12)
v3 <- c(33, 31, 40, 25, 27, 40)
Q13)
v1 <- c("pato", "cachorro", "minhoca", "lagarto", NA, "")
v3 <- c(33, 31, 40, 25, 27, 40)
myData <- data.frame(v1, v3)
Q14)
v1 <- c("pato", "cachorro", "minhoca", "lagarto")
v4 <- c(33, 31, 40, 25)
myData2 <- data.frame(v1,v4)
names(myData2) <- c("animal", "idade")
Q15)
ls()
## [1] "mtcars" "myData" "myData2" "v1" "v2" "v3" "v4"
Q16)
v1 <- c("pato", "cachorro", "minhoca", "lagarto")
sum(v4)
## [1] 129