I have spent HW3 and HW4 cleaning up the 2017 Australian Marriage Law dataset and better understanding it. I returned to HW4 and attempted to save a cleaner version of the dataset as a .csv file using the readr function write_csv. I will try to read in the data below:
ausmar <- read_csv("/Users/Megan Georges/Documents/DACSS601_R/Data/ausmar.csv")
## Rows: 150 Columns: 6
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## chr (2): Divisions, Cities
## dbl (4): Response_Clear_Yes, Response_Clear_No, Response_Not_Clear, Non_Resp...
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
head(ausmar)
## # A tibble: 6 x 6
## Divisions Cities Response_Clear_~ Response_Clear_~ Response_Not_Cl~
## <chr> <chr> <dbl> <dbl> <dbl>
## 1 New South Wales Divisions Banks 37736 46343 247
## 2 New South Wales Divisions Barton 37153 47984 226
## 3 New South Wales Divisions Bennelong 42943 43215 244
## 4 New South Wales Divisions Berowra 48471 40369 212
## 5 New South Wales Divisions Blaxland 20406 57926 220
## 6 New South Wales Divisions Bradfield 53681 34927 202
## # ... with 1 more variable: Non_Response <dbl>
I don’t like that each division name ends with “Divisions” instead of “Division”, so I used the mutate() function to change the names… Then I decided that having “Division” in each value of the Division column was repetitive, so I removed it altogether.
ausmar <- ausmar %>%
mutate(Divisions = case_when(
Divisions == "New South Wales Divisions" ~ "New South Wales",
Divisions == "Victoria Divisions" ~ "Victoria",
Divisions == "Queensland Divisions" ~ "Queensland",
Divisions == "South Australia Divisions" ~ "South Australia",
Divisions == "Western Australia Divisions" ~ "Western Australia",
Divisions == "Tasmania Divisions" ~ "Tasmania",
Divisions == "Northern Territory Divisions" ~ "Northern Territory",
Divisions == "Australian Capital Territory Divisions" ~ "Australian Capital Territory"
))
I have really only been displaying data in tibbles. I wanted to play around with creating a more appealing and clear table for the dataset when the file is knitted. I decided to use the function kable() from the knitr package and download kableExtra because it is simple and works with a rectangular dataset like the cleaned-up Australian Marraige Law dataset.
kable(ausmar, col.names = c("Division", "City", "Response Yes (Clear)", "Response No (Clear)", "Response Not Clear", "No Response"),
align = c('c', 'c', 'c', 'c', 'c', 'c')) %>%
add_header_above(c("Location"=2, "Type of Response"=4))%>%
kable_styling(fixed_thead = TRUE)%>%
scroll_box(width = "100%", height = "500px")
| Division | City | Response Yes (Clear) | Response No (Clear) | Response Not Clear | No Response |
|---|---|---|---|---|---|
| New South Wales | Banks | 37736 | 46343 | 247 | 20928 |
| New South Wales | Barton | 37153 | 47984 | 226 | 24008 |
| New South Wales | Bennelong | 42943 | 43215 | 244 | 19973 |
| New South Wales | Berowra | 48471 | 40369 | 212 | 16038 |
| New South Wales | Blaxland | 20406 | 57926 | 220 | 25883 |
| New South Wales | Bradfield | 53681 | 34927 | 202 | 17261 |
| New South Wales | Calare | 54091 | 35779 | 285 | 25342 |
| New South Wales | Chifley | 32871 | 46702 | 263 | 28180 |
| New South Wales | Cook | 47505 | 38804 | 229 | 18713 |
| New South Wales | Cowper | 57493 | 38317 | 315 | 25197 |
| New South Wales | Cunningham | 60906 | 31840 | 268 | 20607 |
| New South Wales | Dobell | 59475 | 30987 | 255 | 24275 |
| New South Wales | Eden-Monaro | 57223 | 30926 | 249 | 22139 |
| New South Wales | Farrer | 48432 | 39297 | 277 | 25669 |
| New South Wales | Fowler | 27847 | 48782 | 228 | 29251 |
| New South Wales | Gilmore | 59322 | 36386 | 303 | 23109 |
| New South Wales | Grayndler | 73208 | 18429 | 136 | 16074 |
| New South Wales | Greenway | 38016 | 43980 | 217 | 25253 |
| New South Wales | Hughes | 51337 | 36558 | 185 | 17038 |
| New South Wales | Hume | 51284 | 36271 | 213 | 23457 |
| New South Wales | Hunter | 59137 | 32723 | 251 | 25253 |
| New South Wales | Kingsford Smith | 56297 | 31510 | 225 | 22399 |
| New South Wales | Lindsay | 49071 | 38295 | 234 | 26955 |
| New South Wales | Lyne | 51416 | 41539 | 316 | 21426 |
| New South Wales | Macarthur | 43323 | 39907 | 228 | 27271 |
| New South Wales | Mackellar | 62350 | 29330 | 208 | 17500 |
| New South Wales | Macquarie | 56180 | 31778 | 235 | 18490 |
| New South Wales | McMahon | 29146 | 53967 | 242 | 23721 |
| New South Wales | Mitchell | 42112 | 43652 | 176 | 19436 |
| New South Wales | Newcastle | 71158 | 23999 | 232 | 19970 |
| New South Wales | New England | 44608 | 40324 | 256 | 25581 |
| New South Wales | North Sydney | 64813 | 25473 | 193 | 17538 |
| New South Wales | Page | 55943 | 37727 | 291 | 25645 |
| New South Wales | Parkes | 41408 | 37108 | 241 | 29777 |
| New South Wales | Parramatta | 29299 | 47038 | 197 | 25757 |
| New South Wales | Paterson | 60915 | 32059 | 279 | 24264 |
| New South Wales | Reid | 43567 | 39061 | 203 | 23786 |
| New South Wales | Richmond | 62591 | 29625 | 274 | 22719 |
| New South Wales | Riverina | 47333 | 39308 | 265 | 25632 |
| New South Wales | Robertson | 58689 | 30614 | 231 | 20431 |
| New South Wales | Shortland | 62455 | 29836 | 255 | 19675 |
| New South Wales | Sydney | 76144 | 14860 | 146 | 22093 |
| New South Wales | Warringah | 64999 | 21660 | 172 | 16630 |
| New South Wales | Watson | 24915 | 57160 | 205 | 24634 |
| New South Wales | Wentworth | 69279 | 16410 | 162 | 18121 |
| New South Wales | Werriwa | 30252 | 53174 | 269 | 29282 |
| New South Wales | Whitlam | 57562 | 34879 | 276 | 23064 |
| Victoria | Aston | 48455 | 29730 | 234 | 17664 |
| Victoria | Ballarat | 65613 | 27405 | 333 | 20923 |
| Victoria | Batman | 66383 | 26906 | 287 | 17901 |
| Victoria | Bendigo | 63412 | 28852 | 333 | 19360 |
| Victoria | Bruce | 34644 | 39203 | 257 | 21261 |
| Victoria | Calwell | 37839 | 49823 | 331 | 23588 |
| Victoria | Casey | 59959 | 28144 | 316 | 16807 |
| Victoria | Chisholm | 49448 | 30844 | 271 | 17188 |
| Victoria | Corangamite | 69723 | 27708 | 326 | 17123 |
| Victoria | Corio | 62658 | 29865 | 359 | 18255 |
| Victoria | Deakin | 55464 | 28973 | 276 | 15389 |
| Victoria | Dunkley | 62840 | 24471 | 285 | 19322 |
| Victoria | Flinders | 68291 | 29275 | 336 | 21407 |
| Victoria | Gellibrand | 62045 | 29065 | 278 | 19771 |
| Victoria | Gippsland | 51196 | 33910 | 338 | 20370 |
| Victoria | Goldstein | 69726 | 21663 | 238 | 14857 |
| Victoria | Gorton | 49834 | 43587 | 347 | 27479 |
| Victoria | Higgins | 70059 | 19375 | 180 | 16615 |
| Victoria | Holt | 47147 | 45875 | 289 | 28260 |
| Victoria | Hotham | 47986 | 32524 | 303 | 19732 |
| Victoria | Indi | 54563 | 31925 | 324 | 18934 |
| Victoria | Isaacs | 56645 | 30063 | 275 | 20692 |
| Victoria | Jagajaga | 65098 | 23453 | 255 | 15363 |
| Victoria | Kooyong | 63592 | 22729 | 231 | 14147 |
| Victoria | Lalor | 57062 | 43429 | 345 | 30127 |
| Victoria | La Trobe | 61807 | 29826 | 268 | 19002 |
| Victoria | Mallee | 42495 | 35795 | 359 | 21207 |
| Victoria | Maribyrnong | 53208 | 35658 | 360 | 23762 |
| Victoria | McEwen | 73705 | 39007 | 377 | 26966 |
| Victoria | McMillan | 61479 | 36500 | 372 | 22403 |
| Victoria | Melbourne | 81287 | 15839 | 182 | 20154 |
| Victoria | Melbourne Ports | 70589 | 15523 | 198 | 18745 |
| Victoria | Menzies | 47137 | 35626 | 258 | 15745 |
| Victoria | Murray | 48205 | 35452 | 357 | 21560 |
| Victoria | Scullin | 48245 | 42147 | 357 | 22817 |
| Victoria | Wannon | 49340 | 31529 | 343 | 18569 |
| Victoria | Wills | 68450 | 29399 | 250 | 20169 |
| Queensland | Blair | 47194 | 31433 | 256 | 23975 |
| Queensland | Bonner | 52139 | 31891 | 209 | 17981 |
| Queensland | Bowman | 53529 | 32627 | 220 | 19691 |
| Queensland | Brisbane | 72812 | 18762 | 159 | 20656 |
| Queensland | Capricornia | 39917 | 33917 | 230 | 24896 |
| Queensland | Dawson | 42539 | 34599 | 205 | 26943 |
| Queensland | Dickson | 54206 | 28988 | 190 | 18527 |
| Queensland | Fadden | 52154 | 32218 | 215 | 26234 |
| Queensland | Fairfax | 58510 | 32451 | 277 | 21335 |
| Queensland | Fisher | 52023 | 30783 | 258 | 19625 |
| Queensland | Flynn | 39020 | 36783 | 262 | 24529 |
| Queensland | Forde | 46937 | 30585 | 231 | 24423 |
| Queensland | Griffith | 69171 | 21132 | 184 | 20133 |
| Queensland | Groom | 40536 | 41915 | 262 | 20717 |
| Queensland | Herbert | 48110 | 28441 | 207 | 29665 |
| Queensland | Hinkler | 40649 | 39548 | 308 | 22425 |
| Queensland | Kennedy | 33160 | 37784 | 263 | 29794 |
| Queensland | Leichhardt | 47750 | 27606 | 239 | 35841 |
| Queensland | Lilley | 59991 | 28671 | 218 | 20249 |
| Queensland | Longman | 51268 | 33576 | 258 | 24250 |
| Queensland | Maranoa | 35475 | 45308 | 352 | 22553 |
| Queensland | McPherson | 54034 | 28486 | 229 | 23214 |
| Queensland | Moncrieff | 50566 | 28717 | 214 | 25232 |
| Queensland | Moreton | 47418 | 30413 | 220 | 20020 |
| Queensland | Oxley | 44655 | 29365 | 224 | 23348 |
| Queensland | Petrie | 53144 | 33067 | 200 | 23323 |
| Queensland | Rankin | 41570 | 34621 | 237 | 26119 |
| Queensland | Ryan | 64967 | 24451 | 162 | 16223 |
| Queensland | Wide Bay | 46507 | 37065 | 319 | 21645 |
| Queensland | Wright | 47109 | 35812 | 280 | 22144 |
| South Australia | Adelaide | 62769 | 26771 | 217 | 20477 |
| South Australia | Barker | 42498 | 38827 | 243 | 24297 |
| South Australia | Boothby | 62139 | 28556 | 234 | 16919 |
| South Australia | Grey | 40811 | 35750 | 260 | 25327 |
| South Australia | Hindmarsh | 57947 | 33613 | 273 | 20548 |
| South Australia | Kingston | 58863 | 27567 | 252 | 20764 |
| South Australia | Makin | 51547 | 33743 | 242 | 21991 |
| South Australia | Mayo | 57361 | 31247 | 261 | 17239 |
| South Australia | Port Adelaide | 53649 | 33869 | 276 | 27253 |
| South Australia | Sturt | 52308 | 32655 | 252 | 19410 |
| South Australia | Wakefield | 52636 | 33649 | 268 | 27802 |
| Western Australia | Brand | 51953 | 25481 | 194 | 24466 |
| Western Australia | Burt | 44058 | 33275 | 169 | 24197 |
| Western Australia | Canning | 48486 | 32019 | 214 | 22157 |
| Western Australia | Cowan | 44388 | 31075 | 184 | 21330 |
| Western Australia | Curtin | 59638 | 22943 | 178 | 15706 |
| Western Australia | Durack | 39304 | 27128 | 194 | 31428 |
| Western Australia | Forrest | 51612 | 29285 | 225 | 21752 |
| Western Australia | Fremantle | 57541 | 24559 | 236 | 19878 |
| Western Australia | Hasluck | 47880 | 28836 | 230 | 19570 |
| Western Australia | Moore | 56690 | 26690 | 195 | 16916 |
| Western Australia | O’Connor | 43554 | 33987 | 234 | 24925 |
| Western Australia | Pearce | 54305 | 30699 | 209 | 26401 |
| Western Australia | Perth | 57510 | 22967 | 177 | 19479 |
| Western Australia | Stirling | 47225 | 30060 | 190 | 21345 |
| Western Australia | Swan | 49093 | 26830 | 185 | 21857 |
| Western Australia | Tangney | 48338 | 30090 | 174 | 14926 |
| Tasmania | Bass | 36249 | 22510 | 145 | 15487 |
| Tasmania | Braddon | 30054 | 25573 | 154 | 17632 |
| Tasmania | Denison | 45005 | 15992 | 167 | 13092 |
| Tasmania | Franklin | 44746 | 20322 | 163 | 13605 |
| Tasmania | Lyons | 35894 | 25258 | 176 | 17204 |
| Northern Territory | Lingiari(c) | 19026 | 15898 | 106 | 34854 |
| Northern Territory | Solomon | 29660 | 15792 | 123 | 22642 |
| Australian Capital Territory | Canberra(d) | 89590 | 31361 | 281 | 24399 |
| Australian Capital Territory | Fenner(e) | 85869 | 30159 | 253 | 26196 |
I think that a very useful piece of information for researchers and organizers to pay mind to is the proportion of voters that did not respond to the marriage law survey. I’d be curious to learn more about what produced high or low rates of response in different areas.
ausmartotals <- ausmar %>%
mutate(Total = (Response_Clear_Yes + Response_Clear_No + Response_Not_Clear + Non_Response))
ausmarnon <- ausmartotals %>%
select(Divisions, Cities, Non_Response, Total) %>%
mutate(Prop_Non_Response = (Non_Response/Total *100))
ausmarnon %>%
select(Divisions, Cities, Prop_Non_Response) %>%
arrange(desc(Prop_Non_Response)) %>%
kable(col.names = c("Division", "City", "Non Response Proportion"),
align = c('c', 'c', 'c'),
caption = "Proportion of Voters that Did Not Respond in Each City") %>%
kable_styling(fixed_thead = TRUE)%>%
scroll_box(width = "100%", height = "500px")
| Division | City | Non Response Proportion |
|---|---|---|
| Northern Territory | Lingiari(c) | 49.87408 |
| Northern Territory | Solomon | 33.19114 |
| Queensland | Leichhardt | 32.16286 |
| Western Australia | Durack | 32.05173 |
| Queensland | Kennedy | 29.49872 |
| Queensland | Herbert | 27.87461 |
| New South Wales | Fowler | 27.56720 |
| New South Wales | Parkes | 27.43564 |
| New South Wales | Chifley | 26.08873 |
| New South Wales | Werriwa | 25.91855 |
| Queensland | Dawson | 25.83568 |
| Queensland | Rankin | 25.47027 |
| New South Wales | Parramatta | 25.18012 |
| Queensland | Capricornia | 25.15764 |
| South Australia | Grey | 24.79442 |
| New South Wales | Blaxland | 24.78384 |
| New South Wales | Macarthur | 24.62860 |
| Queensland | Flynn | 24.38416 |
| South Australia | Wakefield | 24.31201 |
| Western Australia | O’Connor | 24.26972 |
| Queensland | Moncrieff | 24.09266 |
| Tasmania | Braddon | 24.01754 |
| Western Australia | Brand | 23.96419 |
| Queensland | Oxley | 23.92409 |
| Queensland | Forde | 23.90287 |
| Western Australia | Burt | 23.79276 |
| South Australia | Port Adelaide | 23.68858 |
| Queensland | Fadden | 23.67241 |
| Western Australia | Pearce | 23.65384 |
| New South Wales | Lindsay | 23.53018 |
| New South Wales | Greenway | 23.49859 |
| Queensland | Blair | 23.30883 |
| Victoria | Holt | 23.24568 |
| New South Wales | New England | 23.09401 |
| New South Wales | Watson | 23.04095 |
| Victoria | Lalor | 23.00421 |
| South Australia | Barker | 22.95093 |
| New South Wales | Riverina | 22.77631 |
| Victoria | Gorton | 22.66365 |
| New South Wales | Farrer | 22.58104 |
| Western Australia | Swan | 22.31103 |
| New South Wales | Reid | 22.30976 |
| Victoria | Bruce | 22.29434 |
| Queensland | Longman | 22.17609 |
| New South Wales | McMahon | 22.15342 |
| Western Australia | Cowan | 21.99491 |
| New South Wales | Barton | 21.95097 |
| New South Wales | Calare | 21.94170 |
| Queensland | McPherson | 21.90765 |
| Tasmania | Lyons | 21.90699 |
| Queensland | Hinkler | 21.78665 |
| Queensland | Maranoa | 21.75083 |
| Western Australia | Stirling | 21.59988 |
| Western Australia | Canning | 21.53758 |
| New South Wales | Hunter | 21.51682 |
| New South Wales | Page | 21.44123 |
| Queensland | Petrie | 21.25412 |
| Victoria | Mallee | 21.23758 |
| Western Australia | Forrest | 21.14431 |
| Victoria | Calwell | 21.13980 |
| New South Wales | Dobell | 21.11016 |
| New South Wales | Hume | 21.08968 |
| Victoria | Maribyrnong | 21.03055 |
| Queensland | Wright | 21.02046 |
| Tasmania | Bass | 20.81838 |
| New South Wales | Cowper | 20.76870 |
| New South Wales | Paterson | 20.64723 |
| Queensland | Wide Bay | 20.50959 |
| South Australia | Makin | 20.45237 |
| Victoria | Murray | 20.42169 |
| Queensland | Moreton | 20.41378 |
| New South Wales | Kingsford Smith | 20.28325 |
| Western Australia | Hasluck | 20.27643 |
| Victoria | Scullin | 20.09140 |
| Queensland | Groom | 20.02997 |
| New South Wales | Eden-Monaro | 20.02859 |
| New South Wales | Whitlam | 19.92037 |
| New South Wales | Banks | 19.88333 |
| New South Wales | Richmond | 19.71981 |
| Victoria | Hotham | 19.62504 |
| New South Wales | Sydney | 19.50937 |
| Western Australia | Perth | 19.45313 |
| Western Australia | Fremantle | 19.44743 |
| New South Wales | Gilmore | 19.39976 |
| South Australia | Kingston | 19.32506 |
| Victoria | McEwen | 19.25386 |
| Victoria | Gippsland | 19.25076 |
| Victoria | Isaacs | 19.21709 |
| Queensland | Fisher | 19.11110 |
| Queensland | Fairfax | 18.95215 |
| New South Wales | Bennelong | 18.77603 |
| New South Wales | Lyne | 18.68052 |
| Victoria | Wannon | 18.60976 |
| New South Wales | Robertson | 18.57955 |
| South Australia | Adelaide | 18.57594 |
| Queensland | Bowman | 18.56468 |
| Queensland | Lilley | 18.55510 |
| Victoria | McMillan | 18.55259 |
| South Australia | Sturt | 18.55197 |
| New South Wales | Mitchell | 18.44443 |
| Australian Capital Territory | Fenner(e) | 18.38613 |
| Victoria | Aston | 18.38411 |
| Queensland | Brisbane | 18.37902 |
| Victoria | Ballarat | 18.30950 |
| South Australia | Hindmarsh | 18.28423 |
| Queensland | Griffith | 18.20014 |
| Queensland | Dickson | 18.17959 |
| New South Wales | Cunningham | 18.13661 |
| Victoria | Dunkley | 18.07179 |
| Victoria | Flinders | 17.94249 |
| Victoria | Indi | 17.90517 |
| Victoria | Melbourne Ports | 17.84303 |
| Victoria | Gellibrand | 17.78623 |
| New South Wales | Cook | 17.77940 |
| Tasmania | Denison | 17.63090 |
| Queensland | Bonner | 17.59049 |
| Victoria | Chisholm | 17.58345 |
| New South Wales | Shortland | 17.53237 |
| New South Wales | Wentworth | 17.42873 |
| New South Wales | Macquarie | 17.33172 |
| New South Wales | Newcastle | 17.31118 |
| Victoria | Bendigo | 17.29235 |
| Tasmania | Franklin | 17.25734 |
| Victoria | Melbourne | 17.15789 |
| Victoria | La Trobe | 17.13389 |
| Victoria | Wills | 17.05364 |
| Western Australia | Moore | 16.83335 |
| Australian Capital Territory | Canberra(d) | 16.75399 |
| Victoria | Corio | 16.42567 |
| New South Wales | Bradfield | 16.27306 |
| South Australia | Mayo | 16.24665 |
| New South Wales | North Sydney | 16.23633 |
| New South Wales | Hughes | 16.20845 |
| New South Wales | Warringah | 16.07369 |
| Victoria | Batman | 16.05802 |
| New South Wales | Mackellar | 15.99810 |
| Victoria | Casey | 15.97229 |
| Western Australia | Tangney | 15.95886 |
| Western Australia | Curtin | 15.95085 |
| Victoria | Menzies | 15.94172 |
| South Australia | Boothby | 15.68782 |
| Victoria | Higgins | 15.64074 |
| Victoria | Deakin | 15.37332 |
| Queensland | Ryan | 15.33321 |
| New South Wales | Berowra | 15.26120 |
| Victoria | Corangamite | 14.90512 |
| New South Wales | Grayndler | 14.90445 |
| Victoria | Jagajaga | 14.74815 |
| Victoria | Kooyong | 14.04880 |
| Victoria | Goldstein | 13.95233 |
A very basic bar graph can be useful to display the total number of votes from the survey, including clear Yes and No responses, as well as Unclear responses and Non-Responses. The graph clearly displays that more respondents support a change in law than those who do not support a change in law.
ausmarvotes <- ausmar %>%
select(Response_Clear_Yes, Response_Clear_No, Response_Not_Clear, Non_Response)%>%
summarise(Yes=sum(Response_Clear_Yes), No=sum(Response_Clear_No), NotClear=sum(Response_Not_Clear), NonResponse=sum(Non_Response))
rownames(ausmarvotes) <- c("Total")
## Warning: Setting row names on a tibble is deprecated.
ausmarvotes <- pivot_longer(ausmarvotes, Yes:NonResponse, names_to = "Response", values_to = "Total") %>%
arrange(desc(Total))
kable(ausmarvotes)
| Response | Total |
|---|---|
| Yes | 7817247 |
| No | 4873987 |
| NonResponse | 3278260 |
| NotClear | 36686 |
ggplot(data = ausmarvotes) +
geom_bar(mapping = aes(x = Response, y = Total), stat = "identity") +
labs(title = "Should Australian Law Change to Allow Same-Sex Marraige?",
subtitle = "2017 postal survey of Australians", x = "Type of Response", y = "Total # of Responses")
Removing the NotClear responses, which is a small amount in proportion to the other responses, allows for the bar graph to scale larger and display a more obvious difference in the 3 primary types of responses. As I mentioned above, it is important for organizers and legislatures to pay attention to those who did not respond. They did not respond to the survey, but they may still vote on the matter and influence different results to this survey.
ausmarvotes %>%
filter(Response == "Yes" | Response == "No" | Response == "NonResponse") %>%
ggplot() +
geom_bar(mapping = aes(x = Response, y = Total), stat = "identity") +
labs(title = "Should Australian Law Change to Allow Same-Sex Marraige?",
subtitle = "2017 postal survey of Australians, excluding unclear answers", x = "Type of Response", y = "Number of Responses")
Something that I wish I was able to do was add labels on the boxplots in each bin to show the total count of responses. I was not able to figure out how to get this to work or how to adjust the way the y-axis number labels displayed… Another (more complex) bar graph that I think would be interesting is one that is shows the proportion of each type of response by City or by Division. You could use fill=Response to color code the type of response in each bar (City or Division) or you could use facet_wrap to display each Division as a subplot.