As at June 30, 2022
The number of solar installations was 13,974 with total capacity of 76,016 kW.
This represents an increase in capacity of 10,071 kW over the last 12 months, giving an average monthly increase of 839 kW per month.
The corresponding increase in the number of solar installations in the last 12 months was 1,077, giving an average monthly increase of 90 new installations per month.
The increase in capacity over the last 12 months was 15.3 %
The increase in the number if installations over the last 12 months was 8.4 %
Assumption: The percentage of data for postcode 4573 that is attributed to the Noosa Local Government Area is 20.7 %.
The scrollable table below shows monthly data for the Noosa LGA going back to 2001.
LGA_data[,c(1:3, 6:7)] %>%
kbl(caption = "Noosa solar installs and capacity",
col.names = c("Date",
"Installs",
"kW",
"Installs",
"kW"),
format.args = list(big.mark = ",",scientific = FALSE)) %>%
add_header_above(c(" " = 1, "per month" = 2, "total" = 2)) %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"),
full_width = F, position = "left",
font_size = 12,
fixed_thead = T) %>%
scroll_box(width="50%", height = "450px")
| Date | Installs | kW | Installs | kW |
|---|---|---|---|---|
| 2022-06-30 | 65 | 573 | 13,974 | 76,016 |
| 2022-05-31 | 67 | 599 | 13,909 | 75,443 |
| 2022-04-30 | 70 | 663 | 13,842 | 74,844 |
| 2022-03-31 | 90 | 900 | 13,771 | 74,181 |
| 2022-02-28 | 66 | 608 | 13,681 | 73,281 |
| 2022-01-31 | 58 | 460 | 13,616 | 72,673 |
| 2021-12-31 | 110 | 988 | 13,558 | 72,213 |
| 2021-11-30 | 106 | 1,137 | 13,448 | 71,225 |
| 2021-10-31 | 98 | 920 | 13,343 | 70,088 |
| 2021-09-30 | 107 | 1,068 | 13,245 | 69,168 |
| 2021-08-31 | 123 | 1,177 | 13,138 | 68,100 |
| 2021-07-31 | 118 | 978 | 13,015 | 66,923 |
| 2021-06-30 | 127 | 1,038 | 12,897 | 65,945 |
| 2021-05-31 | 111 | 1,065 | 12,770 | 64,907 |
| 2021-04-30 | 122 | 985 | 12,659 | 63,842 |
| 2021-03-31 | 120 | 1,026 | 12,537 | 62,857 |
| 2021-02-28 | 146 | 1,219 | 12,418 | 61,831 |
| 2021-01-31 | 84 | 632 | 12,272 | 60,612 |
| 2020-12-31 | 153 | 1,528 | 12,187 | 59,980 |
| 2020-11-30 | 145 | 1,254 | 12,035 | 58,452 |
| 2020-10-31 | 125 | 1,011 | 11,890 | 57,198 |
| 2020-09-30 | 127 | 1,100 | 11,765 | 56,187 |
| 2020-08-31 | 121 | 1,104 | 11,638 | 55,087 |
| 2020-07-31 | 134 | 1,115 | 11,516 | 53,983 |
| 2020-06-30 | 123 | 1,008 | 11,382 | 52,868 |
| 2020-05-31 | 133 | 1,134 | 11,259 | 51,860 |
| 2020-04-30 | 107 | 816 | 11,127 | 50,725 |
| 2020-03-31 | 169 | 1,485 | 11,020 | 49,909 |
| 2020-02-29 | 122 | 920 | 10,850 | 48,424 |
| 2020-01-31 | 100 | 796 | 10,728 | 47,505 |
| 2019-12-31 | 128 | 1,052 | 10,628 | 46,709 |
| 2019-11-30 | 129 | 1,009 | 10,501 | 45,656 |
| 2019-10-31 | 109 | 937 | 10,372 | 44,647 |
| 2019-09-30 | 98 | 757 | 10,263 | 43,710 |
| 2019-08-31 | 76 | 562 | 10,165 | 42,953 |
| 2019-07-31 | 114 | 980 | 10,089 | 42,391 |
| 2019-06-30 | 93 | 637 | 9,975 | 41,412 |
| 2019-05-31 | 102 | 819 | 9,882 | 40,775 |
| 2019-04-30 | 84 | 685 | 9,780 | 39,955 |
| 2019-03-31 | 91 | 819 | 9,697 | 39,270 |
| 2019-02-28 | 85 | 603 | 9,606 | 38,451 |
| 2019-01-31 | 80 | 570 | 9,521 | 37,848 |
| 2018-12-31 | 94 | 825 | 9,441 | 37,279 |
| 2018-11-30 | 120 | 854 | 9,347 | 36,454 |
| 2018-10-31 | 85 | 675 | 9,227 | 35,600 |
| 2018-09-30 | 72 | 561 | 9,141 | 34,925 |
| 2018-08-31 | 71 | 520 | 9,069 | 34,364 |
| 2018-07-31 | 86 | 559 | 8,998 | 33,844 |
| 2018-06-30 | 88 | 783 | 8,912 | 33,284 |
| 2018-05-31 | 81 | 618 | 8,824 | 32,501 |
| 2018-04-30 | 73 | 617 | 8,742 | 31,883 |
| 2018-03-31 | 78 | 515 | 8,670 | 31,266 |
| 2018-02-28 | 67 | 420 | 8,592 | 30,751 |
| 2018-01-31 | 56 | 323 | 8,525 | 30,330 |
| 2017-12-31 | 89 | 570 | 8,469 | 30,007 |
| 2017-11-30 | 80 | 500 | 8,380 | 29,438 |
| 2017-10-31 | 90 | 547 | 8,300 | 28,937 |
| 2017-09-30 | 89 | 525 | 8,211 | 28,391 |
| 2017-08-31 | 91 | 637 | 8,122 | 27,866 |
| 2017-07-31 | 75 | 352 | 8,031 | 27,229 |
| 2017-06-30 | 67 | 473 | 7,956 | 26,876 |
| 2017-05-31 | 65 | 395 | 7,890 | 26,404 |
| 2017-04-30 | 67 | 320 | 7,825 | 26,008 |
| 2017-03-31 | 91 | 468 | 7,757 | 25,688 |
| 2017-02-28 | 72 | 340 | 7,666 | 25,220 |
| 2017-01-31 | 43 | 217 | 7,594 | 24,880 |
| 2016-12-31 | 82 | 556 | 7,552 | 24,663 |
| 2016-11-30 | 66 | 373 | 7,470 | 24,107 |
| 2016-10-31 | 67 | 390 | 7,404 | 23,734 |
| 2016-09-30 | 58 | 371 | 7,337 | 23,343 |
| 2016-08-31 | 54 | 302 | 7,279 | 22,973 |
| 2016-07-31 | 45 | 252 | 7,224 | 22,671 |
| 2016-06-30 | 53 | 316 | 7,179 | 22,419 |
| 2016-05-31 | 43 | 236 | 7,126 | 22,102 |
| 2016-04-30 | 45 | 211 | 7,083 | 21,867 |
| 2016-03-31 | 45 | 207 | 7,038 | 21,656 |
| 2016-02-29 | 48 | 361 | 6,993 | 21,448 |
| 2016-01-31 | 34 | 167 | 6,946 | 21,087 |
| 2015-12-31 | 47 | 218 | 6,912 | 20,921 |
| 2015-11-30 | 47 | 240 | 6,865 | 20,703 |
| 2015-10-31 | 54 | 252 | 6,818 | 20,462 |
| 2015-09-30 | 47 | 217 | 6,764 | 20,211 |
| 2015-08-31 | 45 | 237 | 6,717 | 19,994 |
| 2015-07-31 | 58 | 267 | 6,672 | 19,757 |
| 2015-06-30 | 65 | 299 | 6,614 | 19,490 |
| 2015-05-31 | 68 | 376 | 6,549 | 19,191 |
| 2015-04-30 | 60 | 343 | 6,481 | 18,816 |
| 2015-03-31 | 70 | 264 | 6,421 | 18,472 |
| 2015-02-28 | 52 | 209 | 6,352 | 18,209 |
| 2015-01-31 | 51 | 234 | 6,299 | 18,000 |
| 2014-12-31 | 58 | 218 | 6,248 | 17,766 |
| 2014-11-30 | 65 | 255 | 6,190 | 17,547 |
| 2014-10-31 | 62 | 231 | 6,126 | 17,292 |
| 2014-09-30 | 80 | 331 | 6,064 | 17,062 |
| 2014-08-31 | 55 | 204 | 5,984 | 16,731 |
| 2014-07-31 | 63 | 266 | 5,929 | 16,527 |
| 2014-06-30 | 72 | 293 | 5,866 | 16,261 |
| 2014-05-31 | 61 | 253 | 5,793 | 15,968 |
| 2014-04-30 | 58 | 267 | 5,732 | 15,714 |
| 2014-03-31 | 52 | 204 | 5,675 | 15,447 |
| 2014-02-28 | 45 | 169 | 5,623 | 15,243 |
| 2014-01-31 | 35 | 144 | 5,579 | 15,075 |
| 2013-12-31 | 38 | 166 | 5,543 | 14,931 |
| 2013-11-30 | 50 | 158 | 5,505 | 14,765 |
| 2013-10-31 | 45 | 170 | 5,455 | 14,607 |
| 2013-09-30 | 65 | 245 | 5,409 | 14,437 |
| 2013-08-31 | 58 | 177 | 5,345 | 14,193 |
| 2013-07-31 | 89 | 319 | 5,287 | 14,016 |
| 2013-06-30 | 170 | 693 | 5,198 | 13,697 |
| 2013-05-31 | 112 | 434 | 5,027 | 13,004 |
| 2013-04-30 | 85 | 293 | 4,915 | 12,570 |
| 2013-03-31 | 95 | 319 | 4,830 | 12,278 |
| 2013-02-28 | 58 | 247 | 4,736 | 11,958 |
| 2013-01-31 | 63 | 222 | 4,678 | 11,711 |
| 2012-12-31 | 154 | 562 | 4,615 | 11,489 |
| 2012-11-30 | 116 | 380 | 4,460 | 10,927 |
| 2012-10-31 | 118 | 358 | 4,345 | 10,548 |
| 2012-09-30 | 141 | 449 | 4,227 | 10,189 |
| 2012-08-31 | 174 | 544 | 4,086 | 9,740 |
| 2012-07-31 | 138 | 426 | 3,911 | 9,196 |
| 2012-06-30 | 289 | 924 | 3,774 | 8,770 |
| 2012-05-31 | 190 | 587 | 3,485 | 7,846 |
| 2012-04-30 | 139 | 430 | 3,295 | 7,259 |
| 2012-03-31 | 107 | 299 | 3,156 | 6,829 |
| 2012-02-29 | 100 | 289 | 3,049 | 6,529 |
| 2012-01-31 | 45 | 120 | 2,950 | 6,240 |
| 2011-12-31 | 85 | 284 | 2,905 | 6,121 |
| 2011-11-30 | 76 | 207 | 2,820 | 5,837 |
| 2011-10-31 | 55 | 137 | 2,744 | 5,630 |
| 2011-09-30 | 76 | 204 | 2,689 | 5,494 |
| 2011-08-31 | 70 | 171 | 2,614 | 5,290 |
| 2011-07-31 | 91 | 231 | 2,544 | 5,118 |
| 2011-06-30 | 328 | 834 | 2,453 | 4,888 |
| 2011-05-31 | 273 | 663 | 2,125 | 4,054 |
| 2011-04-30 | 124 | 277 | 1,852 | 3,391 |
| 2011-03-31 | 157 | 326 | 1,728 | 3,114 |
| 2011-02-28 | 115 | 253 | 1,571 | 2,789 |
| 2011-01-31 | 78 | 175 | 1,456 | 2,536 |
| 2010-12-31 | 73 | 183 | 1,378 | 2,361 |
| 2010-11-30 | 89 | 196 | 1,305 | 2,178 |
| 2010-10-31 | 65 | 151 | 1,216 | 1,983 |
| 2010-09-30 | 69 | 144 | 1,151 | 1,832 |
| 2010-08-31 | 85 | 175 | 1,082 | 1,688 |
| 2010-07-31 | 92 | 172 | 997 | 1,513 |
| 2010-06-30 | 90 | 132 | 905 | 1,341 |
| 2010-05-31 | 47 | 102 | 815 | 1,210 |
| 2010-04-30 | 52 | 98 | 768 | 1,107 |
| 2010-03-31 | 45 | 87 | 716 | 1,010 |
| 2010-02-28 | 86 | 116 | 671 | 922 |
| 2010-01-31 | 62 | 79 | 586 | 807 |
| 2009-12-31 | 77 | 113 | 524 | 728 |
| 2009-11-30 | 65 | 91 | 447 | 614 |
| 2009-10-31 | 48 | 68 | 382 | 524 |
| 2009-09-30 | 25 | 30 | 334 | 456 |
| 2009-08-31 | 39 | 50 | 308 | 427 |
| 2009-07-31 | 50 | 58 | 270 | 377 |
| 2009-06-30 | 35 | 43 | 220 | 319 |
| 2009-05-31 | 24 | 27 | 185 | 276 |
| 2009-04-30 | 18 | 18 | 161 | 249 |
| 2009-03-31 | 21 | 28 | 143 | 230 |
| 2009-02-28 | 8 | 14 | 122 | 202 |
| 2009-01-31 | 14 | 32 | 114 | 188 |
| 2008-12-31 | 9 | 9 | 100 | 156 |
| 2008-11-30 | 8 | 11 | 91 | 147 |
| 2008-10-31 | 12 | 17 | 83 | 136 |
| 2008-09-30 | 17 | 20 | 71 | 119 |
| 2008-08-31 | 8 | 11 | 54 | 99 |
| 2008-07-31 | 8 | 16 | 45 | 88 |
| 2008-06-30 | 4 | 10 | 37 | 72 |
| 2008-05-31 | 4 | 9 | 33 | 63 |
| 2008-04-30 | 3 | 3 | 29 | 54 |
| 2008-03-31 | 2 | 3 | 26 | 51 |
| 2008-02-29 | 3 | 5 | 24 | 48 |
| 2008-01-31 | 2 | 3 | 21 | 43 |
| 2007-12-31 | 2 | 8 | 19 | 40 |
| 2007-11-30 | 1 | 2 | 17 | 31 |
| 2007-10-31 | 0 | 0 | 15 | 29 |
| 2007-09-30 | 1 | 4 | 15 | 29 |
| 2007-08-31 | 2 | 3 | 14 | 25 |
| 2007-07-31 | 0 | 0 | 12 | 22 |
| 2007-06-30 | 0 | 0 | 12 | 22 |
| 2007-05-31 | 0 | 0 | 12 | 22 |
| 2007-04-30 | 0 | 0 | 12 | 22 |
| 2007-03-31 | 0 | 0 | 12 | 22 |
| 2007-02-28 | 0 | 0 | 12 | 22 |
| 2007-01-31 | 0 | 0 | 12 | 22 |
| 2006-12-31 | 0 | 0 | 12 | 22 |
| 2006-11-30 | 0 | 0 | 12 | 22 |
| 2006-10-31 | 0 | 0 | 12 | 22 |
| 2006-09-30 | 0 | 0 | 12 | 22 |
| 2006-08-31 | 0 | 0 | 12 | 22 |
| 2006-07-31 | 1 | 4 | 12 | 22 |
| 2006-06-30 | 0 | 0 | 11 | 18 |
| 2006-05-31 | 0 | 0 | 11 | 18 |
| 2006-04-30 | 0 | 0 | 11 | 18 |
| 2006-03-31 | 0 | 0 | 11 | 18 |
| 2006-02-28 | 0 | 0 | 11 | 18 |
| 2006-01-31 | 0 | 0 | 11 | 18 |
| 2005-12-31 | 0 | 0 | 11 | 18 |
| 2005-11-30 | 0 | 0 | 11 | 18 |
| 2005-10-31 | 0 | 0 | 11 | 18 |
| 2005-09-30 | 0 | 0 | 11 | 18 |
| 2005-08-31 | 0 | 0 | 11 | 18 |
| 2005-07-31 | 0 | 0 | 11 | 18 |
| 2005-06-30 | 1 | 2 | 11 | 18 |
| 2005-05-31 | 0 | 0 | 10 | 17 |
| 2005-04-30 | 0 | 0 | 10 | 17 |
| 2005-03-31 | 0 | 0 | 10 | 17 |
| 2005-02-28 | 0 | 0 | 10 | 17 |
| 2005-01-31 | 0 | 0 | 10 | 17 |
| 2004-12-31 | 1 | 1 | 10 | 17 |
| 2004-11-30 | 0 | 0 | 9 | 15 |
| 2004-10-31 | 0 | 0 | 9 | 15 |
| 2004-09-30 | 0 | 0 | 9 | 15 |
| 2004-08-31 | 1 | 1 | 9 | 15 |
| 2004-07-31 | 1 | 1 | 8 | 15 |
| 2004-06-30 | 0 | 0 | 7 | 14 |
| 2004-05-31 | 1 | 1 | 7 | 14 |
| 2004-04-30 | 1 | 2 | 6 | 13 |
| 2004-03-31 | 0 | 0 | 5 | 11 |
| 2004-02-29 | 1 | 1 | 5 | 11 |
| 2004-01-31 | 0 | 0 | 4 | 10 |
| 2003-12-31 | 0 | 0 | 4 | 10 |
| 2003-11-30 | 0 | 0 | 4 | 10 |
| 2003-10-31 | 0 | 0 | 4 | 10 |
| 2003-09-30 | 0 | 0 | 4 | 10 |
| 2003-08-31 | 1 | 2 | 4 | 10 |
| 2003-07-31 | 1 | 2 | 3 | 9 |
| 2003-06-30 | 1 | 3 | 2 | 7 |
| 2003-05-31 | 0 | 0 | 1 | 4 |
| 2003-04-30 | 0 | 0 | 1 | 4 |
| 2003-03-31 | 0 | 0 | 1 | 4 |
| 2003-02-28 | 0 | 0 | 1 | 4 |
| 2003-01-31 | 0 | 0 | 1 | 4 |
| 2002-12-31 | 0 | 0 | 1 | 4 |
| 2002-11-30 | 0 | 0 | 1 | 4 |
| 2002-10-31 | 0 | 0 | 1 | 4 |
| 2002-09-30 | 1 | 4 | 1 | 4 |
| 2002-08-31 | 0 | 0 | 0 | 0 |
| 2002-07-31 | 0 | 0 | 0 | 0 |
| 2002-06-30 | 0 | 0 | 0 | 0 |
| 2002-05-31 | 0 | 0 | 0 | 0 |
| 2002-04-30 | 0 | 0 | 0 | 0 |
| 2002-03-31 | 0 | 0 | 0 | 0 |
| 2002-02-28 | 0 | 0 | 0 | 0 |
| 2002-01-31 | 0 | 0 | 0 | 0 |
| 2001-12-31 | 0 | 0 | 0 | 0 |
| 2001-11-30 | 0 | 0 | 0 | 0 |
| 2001-10-31 | 0 | 0 | 0 | 0 |
| 2001-09-30 | 0 | 0 | 0 | 0 |
| 2001-08-31 | 0 | 0 | 0 | 0 |
| 2001-07-31 | 0 | 0 | 0 | 0 |
| 2001-06-30 | 0 | 0 | 0 | 0 |
| 2001-05-31 | 0 | 0 | 0 | 0 |
| 2001-04-30 | 0 | 0 | 0 | 0 |
Showing only data from the beginning of 2010.
Instructions: you can click in the graph area, and then hover near the graph line to see actual values
Assumption: The percentage of data for postcode 4573 that is attributed to the Noosa Local Government Area is 20.7 %.
#
# should be able to refactor this for clarity !
#
# then should be able to parameterise, so same code can be used for different
# locality / postcode datasets
#
p <- LGA_data %>%
filter(year_month>ymd("2010/01/01")) %>%
ggplot(
aes(x=year_month,y=Total_PV_kW)) +
# geom_point(size = 0.2,
# aes(text=sprintf("%s<br>%s kW", format(year_month, format="%d %B %Y"), format(round(Total_PV_kW,0), nsmall=0, big.mark = ",", scientific = FALSE)))) +
geom_line() +
labs(title = "Noosa LGA Solar Capacity by year",
subtitle = "as at 31 October 2021",
caption = "Data from Clean Energy Regulator",
x = "year",
y = "kW installed") +
theme_bw() +
theme(text=element_text(size = 16))
p <- p %>% style(line = list(color = 'green'))
ggplotly(p,
# aes(text=sprintf("%s<br>%s kW", format(year_month, format="%d %B %Y"), #format(round(Total_PV_kW,0), nsmall=0, big.mark = ",", scientific = FALSE))),
tooltip = "text") %>%
config(displaylogo = FALSE, # collaborate = FALSE, - deprecated
modeBarButtonsToRemove = c(
'sendDataToCloud',
'autoScale2d',
'resetScale2d',
# 'toggleSpikelines',
'hoverClosestCartesian',
'hoverCompareCartesian',
'zoom2d',
'pan2d',
'select2d',
'lasso2d',
'zoomIn2d',
'zoomOut2d'
))
Showing only data from the beginning of 2010.
Instructions: you can click in the graph area, and then hover near the graph line to see actual values
Assumption: The percentage of data for postcode 4573 that is attributed to the Noosa Local Government Area is 20.7 %.
p <- LGA_data %>%
filter(year_month>ymd("2010/01/01")) %>%
ggplot(
aes(x=year_month,y=Total_PV_qty)) +
# geom_point(size = 0.2,
# aes(text=sprintf("%s<br>%s kW", format(year_month, format="%d %B %Y"), format(round(Total_PV_kW,0), nsmall=0, big.mark = ",", scientific = FALSE)))) +
geom_line() +
labs(title = "Noosa LGA Solar Installations by year",
subtitle = "as at 31 October 2021",
caption = "Data from Clean Energy Regulator",
x = "year",
y = "installations") +
theme_bw() +
theme(text=element_text(size = 16))
p <- p %>% style(line = list(color = 'green'))
ggplotly(p,
# aes(text=sprintf("%s<br>%s kW", format(year_month, format="%d %B %Y"), #format(round(Total_PV_kW,0), nsmall=0, big.mark = ",", scientific = FALSE))),
tooltip = "text") %>%
config(displaylogo = FALSE, # collaborate = FALSE, - deprecated
modeBarButtonsToRemove = c(
'sendDataToCloud',
'autoScale2d',
'resetScale2d',
# 'toggleSpikelines',
'hoverClosestCartesian',
'hoverCompareCartesian',
'zoom2d',
'pan2d',
'select2d',
'lasso2d',
'zoomIn2d',
'zoomOut2d'
))
Clean Energy Regulator reported number of installations of Solar Water Heaters is plotted below.
Assumption: The percentage of data for postcode 4573 that is attributed to the Noosa Local Government Area is 20.7 %.
p <- LGA_data %>%
# filter(year_month>ymd("2010/01/01")) %>%
ggplot(
aes(x=year_month,y=Total_SWH_qty)) +
# geom_point(size = 0.2,
# aes(text=sprintf("%s<br>%s kW", format(year_month, format="%d %B %Y"), format(round(Total_PV_kW,0), nsmall=0, big.mark = ",", scientific = FALSE)))) +
geom_line() +
labs(title = "Noosa LGA Solar Water Heater Installs",
subtitle = "as at 31 October 2021",
caption = "Data from Clean Energy Regulator",
x = "year",
y = "installations") +
theme_bw() +
theme(text=element_text(size = 16))
p <- p %>% style(line = list(color = 'green'))
ggplotly(p,
# aes(text=sprintf("%s<br>%s kW", format(year_month, format="%d %B %Y"), #format(round(Total_PV_kW,0), nsmall=0, big.mark = ",", scientific = FALSE))),
tooltip = "text") %>%
config(displaylogo = FALSE, # collaborate = FALSE, - deprecated
modeBarButtonsToRemove = c(
'sendDataToCloud',
'autoScale2d',
'resetScale2d',
# 'toggleSpikelines',
'hoverClosestCartesian',
'hoverCompareCartesian',
'zoom2d',
'pan2d',
'select2d',
'lasso2d',
'zoomIn2d',
'zoomOut2d'
))
p <- LGA_data %>%
# filter(year_month>ymd("2010/01/01")) %>%
ggplot(
aes(x=year_month,y=Total_SWHASHP_qty)) +
# geom_point(size = 0.2,
# aes(text=sprintf("%s<br>%s kW", format(year_month, format="%d %B %Y"), format(round(Total_PV_kW,0), nsmall=0, big.mark = ",", scientific = FALSE)))) +
geom_line() +
labs(title = "Noosa LGA ASHP Solar Water Heater Installs",
subtitle = "as at 31 October 2021",
caption = "Data from Clean Energy Regulator",
x = "year",
y = "installations") +
theme_bw() +
theme(text=element_text(size = 16))
p <- p %>% style(line = list(color = 'green'))
ggplotly(p,
# aes(text=sprintf("%s<br>%s kW", format(year_month, format="%d %B %Y"), #format(round(Total_PV_kW,0), nsmall=0, big.mark = ",", scientific = FALSE))),
tooltip = "text") %>%
config(displaylogo = FALSE, # collaborate = FALSE, - deprecated
modeBarButtonsToRemove = c(
'sendDataToCloud',
'autoScale2d',
'resetScale2d',
# 'toggleSpikelines',
'hoverClosestCartesian',
'hoverCompareCartesian',
'zoom2d',
'pan2d',
'select2d',
'lasso2d',
'zoomIn2d',
'zoomOut2d'
))
The data Energex currently make available publicly goes back to the start of 2016.
The Local Government Area data is based on the geo-location of customer address locations.
The table below shows the number of different types of Energex Customer Connections for the Noosa LGA
Note that a Customer Connection corresponds to the number of National Metering Identifier. The National Metering Identifier (NMI) is a unique 10 or 11 digit number used to identify every electricity network connection point in Australia
# read in data from saved rds file
rdsfilename = "EQld_consumption_Noosa_LGA.rds"
Noosa_LGA_consump <- read_rds(rdsfilename)
# just get Noosa LGA from this
myNoosaLGA <- Noosa_LGA_consump %>% filter(locality == 'NOOSA SHIRE')
myNoosaLGA[,c(2, 6:8)] %>%
kbl(caption = "Energex Customer Connections",
col.names = c("Date",
"Business",
"Residential",
"Solar"),
format.args = list(big.mark = ",",scientific = FALSE)) %>%
# add_header_above(c(" " = 1, "per month" = 2, "total" = 2)) %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"),
full_width = F, position = "left",
font_size = 12,
fixed_thead = T) %>%
scroll_box(width="50%", height = "450px")
| Date | Business | Residential | Solar |
|---|---|---|---|
| 2021-12-31 | 2,853 | 29,332 | 10,691 |
| 2021-11-30 | 2,867 | 29,332 | 10,645 |
| 2021-10-31 | 2,867 | 29,305 | 10,585 |
| 2021-09-30 | 2,862 | 29,277 | 10,516 |
| 2021-08-31 | 2,869 | 29,267 | 10,441 |
| 2021-07-31 | 2,862 | 29,251 | 10,347 |
| 2021-06-30 | 2,857 | 29,203 | 10,257 |
| 2021-05-31 | 2,858 | 29,203 | 10,198 |
| 2021-04-30 | 2,847 | 29,212 | 10,089 |
| 2021-03-31 | 2,833 | 29,192 | 10,019 |
| 2021-02-28 | 2,837 | 29,177 | 9,930 |
| 2021-01-31 | 2,833 | 29,179 | 9,825 |
| 2020-12-31 | 2,824 | 29,153 | 9,755 |
| 2020-11-30 | 2,830 | 29,160 | 9,684 |
| 2020-10-31 | 2,815 | 29,147 | 9,578 |
| 2020-09-30 | 2,806 | 29,122 | 9,470 |
| 2020-08-31 | 2,812 | 29,051 | 9,382 |
| 2020-07-31 | 2,800 | 29,060 | 9,283 |
| 2020-06-30 | 2,788 | 29,020 | 9,188 |
| 2020-05-31 | 2,798 | 28,983 | 9,100 |
| 2020-04-30 | 2,753 | 28,974 | 8,990 |
| 2020-03-31 | 2,749 | 28,964 | 8,865 |
| 2020-02-29 | 2,763 | 28,966 | 8,763 |
| 2020-01-31 | 2,763 | 28,956 | 8,674 |
| 2019-12-31 | 2,756 | 28,928 | 8,602 |
| 2019-11-30 | 2,761 | 28,937 | 8,549 |
| 2019-10-31 | 2,755 | 28,895 | 8,473 |
| 2019-09-30 | 2,741 | 28,855 | 8,369 |
| 2019-08-31 | 2,751 | 28,831 | 8,311 |
| 2019-07-31 | 2,744 | 28,805 | 8,229 |
| 2019-06-30 | 2,736 | 28,763 | 8,133 |
| 2019-05-31 | 2,756 | 28,741 | 8,079 |
| 2019-04-30 | 2,738 | 28,726 | 8,004 |
| 2019-03-31 | 2,732 | 28,676 | 7,917 |
| 2019-02-28 | 2,753 | 28,676 | 7,871 |
| 2019-01-31 | 2,741 | 28,649 | 7,809 |
| 2018-12-31 | 2,725 | 28,595 | 7,730 |
| 2018-11-30 | 2,737 | 28,616 | 7,678 |
| 2018-10-31 | 2,720 | 28,591 | 7,603 |
| 2018-09-30 | 2,702 | 28,558 | 7,535 |
| 2018-08-31 | 2,715 | 28,551 | 7,478 |
| 2018-07-31 | 2,711 | 28,524 | 7,402 |
| 2018-06-30 | 2,706 | 28,490 | 7,312 |
| 2018-05-31 | 2,712 | 28,464 | 6,814 |
| 2018-04-30 | 2,710 | 28,453 | 7,250 |
| 2018-03-31 | 2,714 | 28,382 | 7,194 |
| 2018-02-28 | 2,726 | 28,407 | 7,164 |
| 2018-01-31 | 2,724 | 28,390 | 7,092 |
| 2017-12-31 | 2,719 | 28,345 | 7,045 |
| 2017-11-30 | 2,731 | 28,371 | 7,031 |
| 2017-10-31 | 2,716 | 28,350 | 6,936 |
| 2017-09-30 | 2,702 | 28,331 | 6,865 |
| 2017-08-31 | 2,686 | 28,281 | 6,809 |
| 2017-07-31 | 2,670 | 28,259 | 6,754 |
| 2017-06-30 | 2,670 | 28,211 | 6,695 |
| 2017-05-31 | 2,682 | 28,228 | 6,659 |
| 2017-04-30 | 2,669 | 28,171 | 6,600 |
| 2017-03-31 | 2,668 | 28,149 | 6,568 |
| 2017-02-28 | 2,676 | 28,124 | 6,491 |
| 2017-01-31 | 2,680 | 28,087 | 6,453 |
| 2016-12-31 | 2,674 | 28,058 | 6,381 |
| 2016-11-30 | 2,668 | 28,022 | 6,344 |
| 2016-10-31 | 2,637 | 27,992 | 6,288 |
| 2016-09-30 | 2,637 | 27,974 | 6,230 |
| 2016-08-31 | 2,650 | 27,882 | 6,193 |
| 2016-07-31 | 2,630 | 27,841 | 6,139 |
| 2016-06-30 | 2,626 | 27,815 | 6,105 |
| 2016-05-31 | 2,637 | 27,857 | 6,080 |
| 2016-04-30 | 2,630 | 27,804 | 6,038 |
| 2016-03-31 | 2,617 | 27,773 | 5,998 |
| 2016-02-29 | 2,630 | 27,769 | 5,988 |
| 2016-01-31 | 2,616 | 27,735 | 5,962 |
Each Distributed Network Service Provider(DNSP), like Energex, submit reports to AEMO on a quarterly basis and what is termed āDistributed Energy Resourcesā.
This includes rooftop solar systems and battery systems, for both business and residential customers, down to postcode level.
There are various sources of data for tracking the number of installations and capacity of solar PV systems.
The Clean Energy Regulator manages the issuing of Small Technology Certificates which is the mechanism for the incentivising renewable energy systems.
The Clean Energy Regulator provides data on a monthly basis down to postcode level.
Reference - http://www.cleanenergyregulator.gov.au/RET/Forms-and-resources/Postcode-data-for-small-scale-installations
The Noosa LGA maps closely to postcodes 4563, 4565, 4566, 4567, 4568, 4569, 4571, and includes the Peregian Beach and Marcus Beach localities of postcode 4573.
A factor of 20% is used to estimate the Noosa LGA part of postcode 4573, based on historical data from Energex at the locality level. A live reference canāt be given as Energex no longer make this information available publicly.
In addition to small scale solar, the CER also publishes monthly data on the numbers of Solar Water Heaters, and Air-Sourced Heat Pump Solar Water Heaters. Solar Water Heaters refer to passive rooftop systems, and Air-Sourced Heat Pump Solar Water Heaters which heats water using energy from the ambient air, similar to a reverse cycle air-conditioner.
Energex is responsible for the approval of all solar PV systems to their network.
Energex provide data on electricity consumption and solar exported to the grid, by residential customers, business customer, and customers with solar.
This information is provided at an LGA and postcode level, on a quarterly basis.
The LGA information is based on the geo-location of the customer address, so will be accurate rather then inferred.
Reference - https://www.energex.com.au/about-us/company-information/our-network/energy-usage-data-to-share
AEMO manage electricity and gas systems and markets across Australia.
Each Distributed Network Service Provider(DNSP), like Energex, submit reports to AEMO on a quarterly basis and what is termed āDistributed Energy Resourcesā.
This includes rooftop solar systems and battery systems, for both business and residential customers, down to postcode level.
Reference - https://aemo.com.au/energy-systems/electricity/der-register/data-der/data-downloads
This page show the most recent data available from these sources, together with any assumptions made when presenting consolidated data at the Local Government Area level.
Click on the coloured areas of the map. Popups will show the LGA area, or the postcode.
Note that the postcode is shown, for example for 4567, in the format QLD456731.
So to get the actual postcode, ignore the QLD and the trailing digits ā31ā
The LGA boundaries are shown in green.
Use the + - buttons to zoom, and click the icon below the + - buttons to change the background map. āOpenStreetMapā will show locations and a street map.
The close correspondance between the LGA and postcode boundaries is apparent.
# borrowed this code from EQld_NetworkMaps.rmd
# define some global variables for folders
# but hardwire the location as a shortcut
# base_folder <- getwd()
maps_folder <- "/Users/geremida/Dropbox/ZENE/R/EQld_NetworkMaps/Energex_maps/"
myLGA <- readRDS(file=paste0(maps_folder,"Queensland_LGA_map.rds"))
# just get Gympie, Noosa & Sunshine Coast
NoosaLGA <- myLGA %>% filter(LGA_CODE %in% c('3620','5740','6720'))
myPostcodes <- readRDS(file=paste0(maps_folder,"Queensland_Postcode_map.rds"))
NoosaPostcodes <- myPostcodes %>% filter(PC_PID %in% c('QLD456331', 'QLD456531','QLD456631', 'QLD456731','QLD456831', 'QLD456931','QLD457131', 'QLD457331'))
tmap_mode(mode = "view")
## tmap mode set to interactive viewing
tm_shape(NoosaLGA)+
tm_polygons(col = "MAP_COLORS", alpha = 0.1,border.col = "chartreuse", lwd = 4) +
tm_shape(NoosaPostcodes)+
tm_polygons(col = "MAP_COLORS", alpha = 0.2, border.col = "darkmagenta")
did same hack for Feb 22 & Mar 22 & Apr 22 contacting Bryant, Darren Darren.Bryant@cer.gov.au again to request fix
Table is showing 0kW installed for Feb 2022 Found problem was extra space inserted by CER for Feb-22 header for kW column Temporary fix is to adjust csv file to remove extra space Sent message to CER