altogether
as mean and SEM
For BIOL1040, when Semesters 1 and 2 are pooled, there is a statistically significant difference in final marks (overall and) for all pair-wise comparisons between Report 1, 2, 3 and 4, EXCEPT Report 3 final marks are not different to Report 4
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(report) 3 89738 29913 179.4 <2e-16 ***
## Residuals 5312 885701 167
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = Final.Grade.percent ~ as.factor(report), data = AcP.biol.df)
##
## $`as.factor(report)`
## diff lwr upr p adj
## Report 2-Report 1 4.7651220 3.5756149 5.954629 0.0000000
## Report 3-Report 1 9.6042949 8.4092097 10.799380 0.0000000
## Report 4-Report 1 10.4215265 8.8855292 11.957524 0.0000000
## Report 3-Report 2 4.8391729 3.6469436 6.031402 0.0000000
## Report 4-Report 2 5.6564046 4.1226282 7.190181 0.0000000
## Report 4-Report 3 0.8172317 -0.7208748 2.355338 0.5212129
For BIOL1040, Semester 1 only, there is a statistically significant difference in final marks (overall and) for all pair-wise comparisons between Report 1, 2, 3 and 4.
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(report) 3 70267 23422 144.4 <2e-16 ***
## Residuals 2657 430925 162
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = Final.Grade.percent ~ as.factor(report), data = subset(AcP.biol.df, sem == "Sem1"))
##
## $`as.factor(report)`
## diff lwr upr p adj
## Report 2-Report 1 3.014750 1.209579 4.819921 0.0001073
## Report 3-Report 1 9.459033 7.651280 11.266785 0.0000000
## Report 4-Report 1 13.109070 11.296074 14.922066 0.0000000
## Report 3-Report 2 6.444283 4.666202 8.222364 0.0000000
## Report 4-Report 2 10.094320 8.310907 11.877733 0.0000000
## Report 4-Report 3 3.650037 1.864012 5.436063 0.0000010
For BIOM2011, there is a statistically significant difference in final marks between Report 1 and Report 2
##
## Welch Two Sample t-test
##
## data: Final.Grade by report
## t = -8.2232, df = 661.839, p-value = 1.048e-15
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -11.052026 -6.791365
## sample estimates:
## mean in group Report 1 mean in group Report 2
## 59.78776 68.70946
MANCOVA to see if there are differences due to semester or report number in any of the criteria
## Df Pillai approx F num Df den Df
## as.factor(sem) 1 0.041069 18.908 12 5298
## as.factor(report) 3 0.303884 49.781 36 15900
## as.factor(sem):as.factor(report) 2 0.082145 18.914 24 10598
## Residuals 5309
## Pr(>F)
## as.factor(sem) < 2.2e-16 ***
## as.factor(report) < 2.2e-16 ***
## as.factor(sem):as.factor(report) < 2.2e-16 ***
## Residuals
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Response Hypoth :
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(sem) 1 13.57 13.5707 31.806 1.792e-08
## as.factor(report) 3 60.53 20.1777 47.291 < 2.2e-16
## as.factor(sem):as.factor(report) 2 11.83 5.9156 13.864 9.872e-07
## Residuals 5309 2265.22 0.4267
##
## as.factor(sem) ***
## as.factor(report) ***
## as.factor(sem):as.factor(report) ***
## Residuals
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Response Methods.writing :
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(sem) 1 1.12 1.116 1.9580 0.161788
## as.factor(report) 3 194.40 64.800 113.7153 < 2.2e-16
## as.factor(sem):as.factor(report) 2 6.16 3.081 5.4067 0.004511
## Residuals 5309 3025.29 0.570
##
## as.factor(sem)
## as.factor(report) ***
## as.factor(sem):as.factor(report) **
## Residuals
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Response Methods.details :
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(sem) 1 106.6 106.615 116.894 < 2.2e-16 ***
## as.factor(report) 3 286.3 95.433 104.634 < 2.2e-16 ***
## as.factor(sem):as.factor(report) 2 41.4 20.680 22.674 1.566e-10 ***
## Residuals 5309 4842.2 0.912
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Response Methods.design :
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(sem) 1 4.2 4.195 4.1808 0.04093 *
## as.factor(report) 3 81.5 27.151 27.0613 < 2e-16 ***
## as.factor(sem):as.factor(report) 2 121.6 60.799 60.5986 < 2e-16 ***
## Residuals 5309 5326.6 1.003
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Response Results.text :
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(sem) 1 25.5 25.548 31.539 2.054e-08 ***
## as.factor(report) 3 199.8 66.590 82.205 < 2.2e-16 ***
## as.factor(sem):as.factor(report) 2 45.9 22.926 28.302 5.937e-13 ***
## Residuals 5309 4300.5 0.810
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Response Results.figures :
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(sem) 1 54.2 54.226 73.8299 < 2.2e-16 ***
## as.factor(report) 3 127.7 42.565 57.9526 < 2.2e-16 ***
## as.factor(sem):as.factor(report) 2 10.4 5.204 7.0858 0.0008449 ***
## Residuals 5309 3899.3 0.734
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Response Results.legends :
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(sem) 1 33.0 33.002 34.465 4.602e-09 ***
## as.factor(report) 3 318.0 106.016 110.719 < 2.2e-16 ***
## as.factor(sem):as.factor(report) 2 74.5 37.244 38.896 < 2.2e-16 ***
## Residuals 5309 5083.5 0.958
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Response Disc.knowlede :
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(sem) 1 38.3 38.307 53.7596 2.607e-13 ***
## as.factor(report) 3 29.9 9.970 13.9920 4.392e-09 ***
## as.factor(sem):as.factor(report) 2 2.4 1.194 1.6751 0.1874
## Residuals 5309 3782.9 0.713
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Response Disc.InterpFindings :
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(sem) 1 27.0 27.0378 35.8707 2.247e-09 ***
## as.factor(report) 3 66.9 22.3055 29.5924 < 2.2e-16 ***
## as.factor(sem):as.factor(report) 2 7.2 3.6013 4.7778 0.00845 **
## Residuals 5309 4001.7 0.7538
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Response Disc.Evidence :
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(sem) 1 14.2 14.218 14.1657 0.0001692
## as.factor(report) 3 401.7 133.914 133.4250 < 2.2e-16
## as.factor(sem):as.factor(report) 2 11.0 5.479 5.4586 0.0042833
## Residuals 5309 5328.4 1.004
##
## as.factor(sem) ***
## as.factor(report) ***
## as.factor(sem):as.factor(report) **
## Residuals
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Response Refs :
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(sem) 1 47.2 47.17 24.9664 6.021e-07
## as.factor(report) 3 1919.6 639.88 338.6432 < 2.2e-16
## as.factor(sem):as.factor(report) 2 18.9 9.43 4.9892 0.006843
## Residuals 5309 10031.5 1.89
##
## as.factor(sem) ***
## as.factor(report) ***
## as.factor(sem):as.factor(report) **
## Residuals
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Response Writing :
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(sem) 1 3.64 3.637 6.9453 0.008428
## as.factor(report) 3 97.52 32.508 62.0722 < 2.2e-16
## as.factor(sem):as.factor(report) 2 3.64 1.820 3.4745 0.031048
## Residuals 5309 2780.41 0.524
##
## as.factor(sem) **
## as.factor(report) ***
## as.factor(sem):as.factor(report) *
## Residuals
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
MANCOVA to see if there are differences due to semester or report number in any of the criteria
## Df Pillai approx F num Df den Df
## as.factor(sem) 1 0.070726 3.7937 13 648
## as.factor(report) 1 0.163804 9.7645 13 648
## as.factor(sem):as.factor(report) 1 0.094484 5.2011 13 648
## Residuals 660
## Pr(>F)
## as.factor(sem) 6.719e-06 ***
## as.factor(report) < 2.2e-16 ***
## as.factor(sem):as.factor(report) 7.007e-09 ***
## Residuals
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Response Intro :
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(sem) 1 138 138.3 0.3858 0.5348
## as.factor(report) 1 15750 15750.5 43.9280 7.083e-11 ***
## as.factor(sem):as.factor(report) 1 211 210.5 0.5872 0.4438
## Residuals 660 236644 358.6
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Response Hypoth :
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(sem) 1 1865 1865.1 4.8827 0.0274704 *
## as.factor(report) 1 4766 4765.7 12.4763 0.0004409 ***
## as.factor(sem):as.factor(report) 1 332 331.9 0.8689 0.3515902
## Residuals 660 252109 382.0
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Response Methods :
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(sem) 1 808 808.3 2.6079 0.1068
## as.factor(report) 1 12800 12799.6 41.2967 2.506e-10 ***
## as.factor(sem):as.factor(report) 1 453 452.8 1.4608 0.2272
## Residuals 660 204563 309.9
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Response Results.text :
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(sem) 1 1888 1887.9 3.4464 0.06383 .
## as.factor(report) 1 8935 8935.3 16.3115 6.005e-05 ***
## as.factor(sem):as.factor(report) 1 2118 2117.8 3.8661 0.04969 *
## Residuals 660 361543 547.8
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Response Fig.Tables :
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(sem) 1 73 73.1 0.1801 0.6715
## as.factor(report) 1 8963 8962.8 22.0761 3.19e-06 ***
## as.factor(sem):as.factor(report) 1 1055 1054.9 2.5982 0.1075
## Residuals 660 267957 406.0
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Response Legend.Title :
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(sem) 1 418 417.8 0.7532 0.38580
## as.factor(report) 1 3408 3407.7 6.1432 0.01344 *
## as.factor(sem):as.factor(report) 1 500 500.0 0.9013 0.34279
## Residuals 660 366116 554.7
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Response Disc.InterpFindings :
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(sem) 1 2488 2487.6 5.6515 0.01772 *
## as.factor(report) 1 12888 12887.8 29.2786 8.779e-08 ***
## as.factor(sem):as.factor(report) 1 32 31.8 0.0722 0.78821
## Residuals 660 290518 440.2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Response Disc.IntegrateLit :
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(sem) 1 432 432.4 0.8816 0.3481
## as.factor(report) 1 26115 26115.4 53.2450 8.48e-13 ***
## as.factor(sem):as.factor(report) 1 1391 1391.4 2.8369 0.0926 .
## Residuals 660 323714 490.5
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Response Refs :
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(sem) 1 65 65.0 0.1473 0.70129
## as.factor(report) 1 29694 29693.9 67.2957 1.223e-15 ***
## as.factor(sem):as.factor(report) 1 1945 1944.9 4.4077 0.03616 *
## Residuals 660 291222 441.2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Response Kn.PhysMechs :
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(sem) 1 1583 1583.1 3.7372 0.05364 .
## as.factor(report) 1 14542 14542.2 34.3296 7.345e-09 ***
## as.factor(sem):as.factor(report) 1 1324 1323.6 3.1246 0.07758 .
## Residuals 660 279580 423.6
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Response Kn.ExpApproach :
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(sem) 1 1163 1162.7 3.1217 0.07772 .
## as.factor(report) 1 26770 26770.1 71.8721 < 2e-16 ***
## as.factor(sem):as.factor(report) 1 148 147.7 0.3967 0.52904
## Residuals 660 245829 372.5
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Response W.Structure :
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(sem) 1 2512 2512.4 8.4094 0.003857 **
## as.factor(report) 1 12040 12039.8 40.2993 4.053e-10 ***
## as.factor(sem):as.factor(report) 1 6 5.8 0.0196 0.888785
## Residuals 660 197181 298.8
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Response W.LanguageJargon :
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(sem) 1 74 74.1 0.2211 0.63836
## as.factor(report) 1 9623 9622.6 28.7039 1.166e-07 ***
## as.factor(sem):as.factor(report) 1 1762 1762.1 5.2563 0.02218 *
## Residuals 660 221257 335.2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
seperated by semester Where A = 4, B = 3, C = 2, D = 1, E = 0