library(Icens)
## Loading required package: survival
library(DCchoice)
library(readr)
dbe <- read_csv("C:/Users/LCHIPINDU/OneDrive - CIMMYT/CIMMYT/Dr Paswel/Double Bound Experiment/dbe.csv")
## 
## -- Column specification --------------------------------------------------------
## cols(
##   .default = col_double(),
##   IDENTIFIERS = col_logical(),
##   ma6 = col_character(),
##   district = col_character(),
##   a1 = col_character(),
##   vcluster = col_character(),
##   a3 = col_character(),
##   a4 = col_character(),
##   a5 = col_character(),
##   aa5 = col_character(),
##   a7 = col_character(),
##   DOUBLEB = col_logical(),
##   COVAR = col_logical(),
##   sex = col_character(),
##   decision = col_character(),
##   game = col_character(),
##   mf1 = col_character()
## )
## i Use `spec()` for the full column specifications.
View(dbe)
attach(dbe)

sex=as.factor(sex)
vcluster=as.factor(vcluster)

Single-bounded dichotomous choice CV format

sb_1<-turnbull.sb(yesone~ bidone, data = dbe, timeMessage =TRUE,conf.level = 0.95)
summary(sb_1)
## Survival probability: 
##    Upper   Prob.
## 1   0.00  1.0000
## 2   0.25  0.9581
## 3   0.50  0.7387
## 4   0.75  0.3934
## 5    Inf  0.0000
## 
## WTP estimates:
##  Mean: 0.522569  (Kaplan-Meier)
##  Mean: 0.598389  (Spearman-Karber)
##  Median in: [     0.5 ,    0.75 ]
plot(sb_1)

## or
sb_2<-turnbull.sb(yestwo~ bidone, data = dbe)
summary(sb_2)
## Survival probability: 
##    Upper   Prob.
## 1   0.00  1.0000
## 2   0.25  0.1106
## 3   0.50  0.1106
## 4   0.75  0.1106
## 5    Inf  0.0000
## 
## WTP estimates:
##  Mean: 0.082915  (Kaplan-Meier)
##  Mean: 0.194095  (Spearman-Karber)
##  Median in: [       0 ,    0.25 ]
plot(sb_2)

## or 
sb_3<-turnbull.sb(yestwo~ bidtwo, data = dbe)
summary(sb_3)
## Survival probability: 
##    Upper    Prob.
## 1  0.000  1.00000
## 2  0.125  0.66667
## 3  0.250  0.28846
## 4  0.500  0.08396
## 5  0.750  0.08396
## 6  1.000  0.08396
## 7    Inf  0.00000
## 
## WTP estimates:
##  Mean: 0.182357  (Kaplan-Meier)
##  Mean: 0.252392  (Spearman-Karber)
##  Median in: [   0.125 ,    0.25 ]
plot(sb_3)

# Double-bounded dichotomous choice CV format

sb_4<-turnbull.db(yesone+yestwo ~ bidone + bidtwo, data = dbe)
summary(sb_4)
## Survival probability: 
##    Upper    Prob.
## 1  0.000  1.00000
## 2  0.125  0.96424
## 3  0.250  0.89273
## 4  0.500  0.40536
## 5  0.750  0.14804
## 6  1.000  0.02056
## 7    Inf  0.00000
## 
## WTP estimates:
##  Mean: 0.375614  (Kaplan-Meier)
##  Mean: 0.491339  (Spearman-Karber)
##  Median in: [    0.25 ,     0.5 ]
plot(sb_4)

The utility difference function

fmdb <- yesone+yestwo  ~ sex + ageresp+agricown+agricwage+nonagric+hhsz+ + totpltsz+decision+mzarea | log(bidone) + log(bidtwo)

NPdb <- dbchoice(fmdb, data = dbe)
NPdb
## 
## Distribution: log-logistic 
##                              (Intercept) 
##                              -3.84820308 
##                                  sexmale 
##                               0.37066873 
##                                  ageresp 
##                              -0.00318159 
##                                 agricown 
##                               1.10875949 
##                                agricwage 
##                             -10.78584801 
##                                 nonagric 
##                               0.12106203 
##                                     hhsz 
##                               0.00428369 
##                                 totpltsz 
##                               0.20213391 
## decisionmyself.and.other.houseold.member 
##                              -1.73775628 
##                decisionmyself.and.spouse 
##                              -0.17071621 
##                                   mzarea 
##                              -0.13197739 
##                                 log(bid) 
##                              -3.56980616

###+vcluster

NPdbs <- summary(NPdb)
NPdbs
## 
## Call:
## dbchoice(formula = fmdb, data = dbe)
## 
## Formula:
## yesone + yestwo ~ sex + ageresp + agricown + agricwage + nonagric + hhsz + 
##     +totpltsz + decision + mzarea | log(bidone) + log(bidtwo)
## 
## Coefficients: 
##                                            Estimate Std. Error  z value
## (Intercept)                               -3.848203   1.527047  -2.5200
## sexmale                                    0.370669   0.394707   0.9391
## ageresp                                   -0.003182   0.013311  -0.2390
## agricown                                   1.108759   1.240825   0.8936
## agricwage                                -10.785848 371.820725  -0.0290
## nonagric                                   0.121062   1.332400   0.0909
## hhsz                                       0.004284   0.065527   0.0654
## totpltsz                                   0.202134   0.135296   1.4940
## decisionmyself.and.other.houseold.member  -1.737756   1.509304  -1.1514
## decisionmyself.and.spouse                 -0.170716   0.370319  -0.4610
## mzarea                                    -0.131977   0.146495  -0.9009
## log(bid)                                  -3.569806   0.349201 -10.2228
##                                          Pr(>|z|)    
## (Intercept)                               0.01174 *  
## sexmale                                   0.34768    
## ageresp                                   0.81108    
## agricown                                  0.37155    
## agricwage                                 0.97686    
## nonagric                                  0.92760    
## hhsz                                      0.94788    
## totpltsz                                  0.13517    
## decisionmyself.and.other.houseold.member  0.24958    
## decisionmyself.and.spouse                 0.64480    
## mzarea                                    0.36764    
## log(bid)                                  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Distribution: log-logistic 
## Number of Obs.: 122 
## Log-likelihood: -147.557995 
## 
## LR statistic: 1149.539 on 1e+01 DF, p-value: 0.000 
## AIC: 319.115991 , BIC: 352.764243 
## 
## Iterations: 68 24 
## Convergence: TRUE 
## 
## WTP estimates:
##  Mean : 0.5075517 
##  Mean : 0.4864977 (truncated at the maximum bid)
##  Mean : 0.5134222 (truncated at the maximum bid with adjustment)
##  Median: 0.4445276

The confidence intervals for these WTPs are calculated using the

function krCI() or bootCI() as follows:

#krCI(NPdb)
#bootCI(NPdb)
plot(NPdb)

## The range of bid can be limited (e.g., [log(10), log(20)]):
plot(NPdb, bid = c(log(10), log(20)))

fmks <- yesone ~ bidone
NPks <- kristrom(fmks, data = dbe)
NPks
## 
## Probability: 
##   Upper  Prob.
## 1  0.00 1.0000
## 2  0.25 0.9581
## 3  0.50 0.7387
## 4  0.75 0.3934
## 5   Inf 0.0000
NPkss <- summary(NPks)
NPkss
## Survival probability: 
##    Upper   Prob.
## 1   0.00  1.0000
## 2   0.25  0.9581
## 3   0.50  0.7387
## 4   0.75  0.3934
## 5    Inf  0.0000
## 
## WTP estimates:
##  Mean: 0.522569  (Kaplan-Meier)
##  Mean: 0.654434  (Spearman-Karber)
##  Median: 0.672841
plot(NPks)

District Extension methods

demo<-subset(dbe, game=="DEMO")
dm_1<-turnbull.sb(yesone ~ bidtwo, data =demo)
summary(dm_1)
## Survival probability: 
##    Upper  Prob.
## 1  0.000   1.00
## 2  0.125   0.75
## 3  0.250   0.75
## 4  0.500   0.75
## 5  0.750   0.75
## 6  1.000   0.75
## 7    Inf   0.00
## 
## WTP estimates:
##  Mean: 0.750000  (Kaplan-Meier)
##  Mean: 0.765625  (Spearman-Karber)
##  Median in: [       1 ,      NA ]
plot(dm_1)

Seed packs

sp<-subset(dbe, game=="SEED PACK")
dm_2<-turnbull.sb(yesone ~ bidtwo, data =sp)
summary(dm_2)
## Survival probability: 
##    Upper   Prob.
## 1  0.000  1.0000
## 2  0.125  0.6806
## 3  0.250  0.6806
## 4  0.500  0.6806
## 5  0.750  0.6806
## 6  1.000  0.6806
## 7    Inf  0.0000
## 
## WTP estimates:
##  Mean: 0.680556  (Kaplan-Meier)
##  Mean: 0.700521  (Spearman-Karber)
##  Median in: [       1 ,      NA ]
plot(dm_2)

NEIGHBORS FARM

nf<-subset(dbe, game=="NEIGHBORS FARM")
dm_3<-turnbull.sb(yesone ~ bidone, data =nf)
summary(dm_3)
## Survival probability: 
##    Upper   Prob.
## 1   0.00  1.0000
## 2   0.25  0.9623
## 3   0.50  0.8000
## 4   0.75  0.3800
## 5    Inf  0.0000
## 
## WTP estimates:
##  Mean: 0.535566  (Kaplan-Meier)
##  Mean: 0.613066  (Spearman-Karber)
##  Median in: [     0.5 ,    0.75 ]
plot(dm_3)

NONE

nn<-subset(dbe, game=="NONE")
dm_4<-turnbull.sb(yesone ~ bidone, data =nn)
summary(dm_4)
## Survival probability: 
##    Upper   Prob.
## 1   0.00  1.0000
## 2   0.25  0.9565
## 3   0.50  0.7447
## 4   0.75  0.3488
## 5    Inf  0.0000
## 
## WTP estimates:
##  Mean: 0.512510  (Kaplan-Meier)
##  Mean: 0.593905  (Spearman-Karber)
##  Median in: [     0.5 ,    0.75 ]
plot(dm_4)