Problem 1

\[ \int 4e^{-7x} \]

\[ = -\frac{1}{7} * 4e^{-7x} \]

\[ = -\frac{4}{7} * e^{-7x} \]

Problem 2

First we solve for N(t). I re-write the function as:

\[ \frac{dN}{dt} = 3,150 *t^{-4} - 220 \]

\[ N(t) = -\frac{1}{5}* 3,150 *t^{-5} - 220t + C \]

Now we need to solve for C

\[ 6530 = -630 -220+C \]

\[ C = 7,380 \]

Now we plug in C

\[ N(t) = -630 *t^{-5} - 220t + 7,380 \]

Problem 3

Here we need to evaluate the integral from 5 to 8.

\[ \int_{5}^{8} 2x-9dx \]

Evaluate from 5 to 8 \[ = x^2-9x \]

\[ (8^2-9(8)) - (5^2-9*(5)) \]

\[ (-8) - (-20) = 12 \]

Problem 4

First we want to find where the two functions intersect

\[ x^2 -2x -2 = x+2 \]

\[ x^2 -3x -4 = 0 \]

\[ (x-4)(x+1) = 0 \]

\[ x=-1, 4 \]

Now we need to solve the integral of the two functions

\[ \int_{-1}^{4} (x^2 -2x-2) - (x+2) dx \]

\[ \int_{-1}^{4} x^2 -3x -4 dx \]

\[ \frac{x^3}{3} - \frac{3x^2}{2} - 4x \]

\[ (\frac{4^3}{3} -\frac{4^2}{2} - 4*(4)) - (\frac{-1^3}{3} -\frac{-1^2}{2} - 4*(-1)) = 6.83 \]

Problem 5

Here x=number of orders and y=lot size. At any given time we have half the stock on hand. We have 2 functions: \[ x*y=110 , cost=8.25x + 3.75*(\frac{y}{2}) \]

solving for y gives us \[ cost = 8.25x + 3.75*\frac{110}{2x} \]

\[ cost = 8.25x + \frac{206.25}{x} \]

Solve the derivative: \[ cost = 8.25 - \frac{206.25}{x^2} \]

To minimize cost we set it equal to 0 and solve for x

\[ \frac{206.25}{x^2} = 8.25 \]

\[ \frac{206.25}{8.25} = x^2 \]

Solving gets x=5.

Problem 6

\[ \int ln(9x)*x^6dx \]

\[ u=ln(9x), u'=\frac{1}{x}, v'=x^6,v=\frac{1}{7}x^7 \]

\[ uv - \int u'vdx \]

\[ \frac{ln(9x)x^7}{7} - \int \frac{1}{x}\frac{x^7}{7} \]

\[ \frac{ln(9x)x^7}{7} - \int \frac{x^6}{7} \]

\[ \frac{ln(9x)x^7}{7} - \frac{x^7}{49} \]

\[ \frac{x^7}{7}(ln(9x) -\frac{1}{7}) \]

Problem 7

\[ \int_{1}^{e^6} \frac{1}{6x} \]

\[ = \frac{1}{6}ln(x) \]

\[ = \frac{1}{6}ln(e^6) - \frac{1}{6}ln(1) = 1-0 = 1 \]

That means f(x) is a probability function because the sum under the curve over a large span of x equals 1