Inequality and the environment

Richard Martin

2021-11-24

Environmental degradation \(\rightarrow\) greater inequality:

Global warming has very likely exacerbated global economic inequality, including ∼25% increase in population-weighted between-country inequality over the past half century. Diffenbaugh & Burke (2019)

Climate change and climate variability worsen existing poverty, exacerbate inequalities, and trigger both new vulnerabilities and some opportunities for individuals and communities. Olsson et al. (2014)

Poverty and persistent inequality are the most salient of the conditions that shape climate-related vulnerability. Ribot (2013)

Greater inequality \(\rightarrow\) environmental degradation.

  1. The environmental footprint of the wealthy.

The income share of the top 10% increases [U.S. state-level] CO2 emissions. Jorgenson et al. (2017)

    

  1. People living in poverty have more pressing concerns than making enviro-friendly choices.

  

1000 rivers with highest plastic output:

source: https://theoceancleanup.com/sources/

Missmanaged Plastic Waste Per Capita

Other mechanisms:

  1. Political economy: the rich have a preference for more pollution. The greater the resources the rich have, the more likely they are able to “buy” lax environmental regulation. Boyce (1994)

  2. Ravallion et al. (2000) and Levinson & O’Brien (2019) find that emissions are lower with higher inequality.

source: Levinson and O’Brien (2019)

  1. inequality makes collective action more difficult. Ostrom (1990)

  2. Inequality might create perverse incentives e.g. conspicuous consumption, Corneo & Jeanne (1997), labour market rat race, Landers et al. (1996), to the detriment of the environment. Bowles & Park (2005)

Inequality and Intensive Margin of Labour Supply

The planetary boundaries:

Stockholm Resilience Centre
source: J. Lokrantz/Azote based on Steffen et al. (2015)

Environmental Performance Index:

source: Gorham et al. (2019)

Because the underlying methodology and data change between versions of the EPI, it is not appropriate to assemble the scores from each release into a time series (https://epi.yale.edu/faq/epi-faq)

EPI time series.

How the sausage is made:

Econometric theory

… is like an exquisitely balanced French recipe, spelling out precisely with how many turns to mix the sauce, how many carats of spice to add, and for how many milliseconds to bake the mixture at exactly 474 degrees of temperature. But when the statistical cook turns to raw materials, he finds that hearts of cactus fruit are unavailable, so he substitutes chunks of cantaloupe; where the recipe calls for vermicelli he uses shredded wheat; and he substitutes green garment dye for curry, ping-pong balls for turtle’s eggs and, for Chalifougnac vintage 1883, a can of turpentine (Stefan Valavanis)

source: https://i.ytimg.com/vi/m3ce5heo3ns/maxresdefault.jpg

Domestic inequality over time:

Approach taken:

  1. EPI scores seem a little dodgy
  2. Within country inequality is highly stable over time

Log(GDP/Capita) vs. EPI scores

data source: GDP/capita (World Bank) and EPI (Wendling et al. (2020))

Log(GDP/Capita) vs. EPI scores

data source: GDP/capita (World Bank) and EPI (Wendling et al. (2020))

Strong positive correlation:

  1. Environmental health contributes to economic prosperity OR

  2. Economic prosperity allows rich countries to take costly actions to protect the environment OR

  3. Economic prosperity allows rich countries to outsource the production of environmentally damaging goods.

    • Trade data and standard EPI scores can be used to create a weighted EPI score that crudely addresses these leakages.

    • The relationship between gdp/capita and epi scores still exists using this weighted EPI score.

Confounds: wealth and governance.

Measures of Inequality:

EPI ~ controls + inequality

(1)(2)(3)(4)
Control Of Corruption-1.658    -3.275    -3.514 *  -1.676    
(2.388)   (1.927)   (1.676)   (2.361)   
Rule Of Law-6.305    -6.201 *  -2.700    -5.610    
(3.490)   (2.674)   (2.553)   (3.322)   
Political Stability No Violence1.287    0.696    0.306    1.076    
(1.257)   (1.167)   (1.190)   (1.223)   
Voice And Accountability3.339 ** 3.535 ***1.172    3.143 ** 
(1.140)   (0.966)   (1.471)   (1.119)   
Government Effectiveness10.625 ***9.772 ***7.520 ** 10.640 ***
(3.126)   (2.361)   (2.672)   (3.127)   
Regulatory Quality-1.800    1.907    1.787    -2.155    
(2.302)   (1.726)   (1.707)   (2.224)   
Log Gdp Per Cap4.292 ***3.823 ***5.144 ***4.211 ***
(0.761)   (0.738)   (0.838)   (0.748)   
Bottom Fifty Share40.476 **                         
(14.554)                           
Gini Disp        -0.197 *                  
        (0.079)                   
Log Num Poverty                -0.157            
                (0.691)           
Top Ten Share                        -21.422 ** 
                        (6.715)   
*** P < 0.001; ** P < 0.01; * P < 0.05.

Cet Par:

Emission Leakages:

source:https://www.econlib.org/reflections-on-the-sopranos/

A smokestack is not a smoking gun

source:NRDC.org

Using trade data to adjust EPIs

indicator Value in 2018
GDP (current US$ Mil) 1713341.7
Exports (in US$ Mil) 450277.7
Imports (in US$ Mil) 459866.3

Weight on import EPI is \(w_{i}=\frac{M}{GDP-X+M}=\) 0.27

Canada’s import EPI:

partner year share_imports epi
China 2018 12.68 50.74
Germany 2018 3.20 78.37
Japan 2018 2.83 74.69
Mexico 2018 6.17 59.69
United States 2018 51.13 71.19

Environmental accounting

Some other attempts at environmental accounting

Rich countries look a little worse, poor countries look a little better.

import weighted EPI ~ controls + inequality

(1)(2)(3)(4)
Control Of Corruption-2.590    -3.801    -3.901 *  -2.494    
(2.309)   (1.992)   (1.715)   (2.262)   
Rule Of Law-3.905    -2.529    0.224    -3.399    
(3.200)   (2.697)   (2.540)   (3.019)   
Political Stability No Violence1.830    1.644    1.466    1.655    
(1.315)   (1.177)   (1.239)   (1.282)   
Voice And Accountability3.393 ** 3.728 ***1.641    3.170 ** 
(1.203)   (1.003)   (1.475)   (1.168)   
Government Effectiveness6.782 *  5.884 *  3.877    6.724 *  
(3.390)   (2.716)   (3.131)   (3.374)   
Regulatory Quality-2.177    -0.535    -0.746    -2.473    
(2.175)   (1.724)   (1.494)   (2.092)   
Log Gdp Per Cap4.175 ***3.636 ***4.705 ***4.090 ***
(0.855)   (0.819)   (0.952)   (0.839)   
Bottom Fifty Share34.608 **                         
(12.381)                           
Gini Disp        -0.157 *                  
        (0.069)                   
Log Num Poverty                -0.382            
                (0.650)           
Top Ten Share                        -20.324 ***
                        (5.538)   
*** P < 0.001; ** P < 0.01; * P < 0.05.

Added variable plots:

Second look at Inequality

What the subjects saw: (page 1)

\(E[\pi_1]=\left[\alpha e_1+\frac{1-\alpha}{3}(e_1+e_2+e_3)\right]\left(\frac{60-e_1-e_2-e_3}{60}\right)-\frac{e_1}{3}\)

The treatments:

Summary of last round: (Round 2):

Fish: 12.615173826925

Total effort: 16

Because the total effort is larger than the stock of fish the resource is destroyed.
effort Profit
2 -0.67
5 -1.67
9 -3

In your treatment \(\alpha=.5\)

So in your treatment the expected profit function for player 1 is:

\(E[\pi_1]= \left(\frac{e_1}{2}+\frac{1}{6}(e_1+e_2+e_3)\right) \left(\frac{60-e_1-e_2-e_3}{60}\right)-\frac{e_1}{3}\)

How much effort do you want to put into fishing in round 3?

The treatments:

\(\alpha\) \(e^{\star}\) (Nash Equilibrium) \(e^{\star\star}\)(Joint payoff maximizing)
0 0 \(\frac{20}{3}\)
\(\frac12\) \(\frac{20}{3}\) \(\frac{20}{3}\)
1 10 \(\frac{20}{3}\)

References

Bowles, S., & Park, Y. (2005). Emulation, inequality, and work hours: Was thorsten veblen right? The Economic Journal, 115(507), F397–F412.
Boyce, J. K. (1994). Inequality as a cause of environmental degradation. Ecological Economics, 11(3), 169–178.
Budescu, D. V., Rapoport, A., & Suleiman, R. (1992). Simultaneous vs. Sequential requests in resource dilemmas with incomplete information. Acta Psychologica, 80(1-3), 297–310.
Corneo, G., & Jeanne, O. (1997). Conspicuous consumption, snobbism and conformism. Journal of Public Economics, 66(1), 55–71.
De Vos, J. M., Joppa, L. N., Gittleman, J. L., Stephens, P. R., & Pimm, S. L. (2015). Estimating the normal background rate of species extinction. Conservation Biology, 29(2), 452–462.
Diffenbaugh, N. S., & Burke, M. (2019). Global warming has increased global economic inequality. Proceedings of the National Academy of Sciences, 116(20), 9808–9813.
Dı́az, S. M., Settele, J., Brondı́zio, E., Ngo, H., Guèze, M., Agard, J., Arneth, A., Balvanera, P., Brauman, K., Butchart, S., & others. (2019). The global assessment report on biodiversity and ecosystem services: Summary for policy makers.
Gorham, E., Lehman, C., & Kelly, J. (2019). Relationships of the environmental performance index to six interrelated variables in nations around the world. The Bulletin of the Ecological Society of America, 100. https://doi.org/10.1002/bes2.1525
Jorgenson, A., Schor, J., & Huang, X. (2017). Income inequality and carbon emissions in the united states: A state-level analysis, 1997–2012. Ecological Economics, 134, 40–48.
Landers, R. M., Rebitzer, J. B., & Taylor, L. J. (1996). Rat race redux: Adverse selection in the determination of work hours in law firms. The American Economic Review, 329–348.
Lawton, J. H., May, R. M., & Raup, D. M. (1995). Extinction rates (Vol. 11). Oxford University Press Oxford.
Levinson, A. (2009). Technology, international trade, and pollution from US manufacturing. American Economic Review, 99(5), 2177–2192.
Levinson, A., & O’Brien, J. (2019). Environmental engel curves: Indirect emissions of common air pollutants. Review of Economics and Statistics, 101(1), 121–133.
Muradian, R., O’Connor, M., & Martinez-Alier, J. (2002). Embodied pollution in trade: Estimating the ‘environmental load displacement’of industrialised countries. Ecological Economics, 41(1), 51–67.
Olsson, L., Opondo, M., Tschakert, P., Agrawal, A., Eriksen, S. E., & others. (2014). Livelihoods and poverty.
Ostrom, E. (1990). Governing the commons: The evolution of institutions for collective action. Cambridge university press.
Peters, G. P., Minx, J. C., Weber, C. L., & Edenhofer, O. (2011). Growth in emission transfers via international trade from 1990 to 2008. Proceedings of the National Academy of Sciences, 108(21), 8903–8908.
Pimm, S. L., Jenkins, C. N., Abell, R., Brooks, T. M., Gittleman, J. L., Joppa, L. N., Raven, P. H., Roberts, C. M., & Sexton, J. O. (2014). The biodiversity of species and their rates of extinction, distribution, and protection. Science, 344(6187).
Pimm, S. L., Russell, G. J., Gittleman, J. L., & Brooks, T. M. (1995). The future of biodiversity. Science, 269(5222), 347–350.
Ravallion, M., Heil, M., & Jalan, J. (2000). Carbon emissions and income inequality. Oxford Economic Papers, 52(4), 651–669.
Ribot, J. (2013). Vulnerability does not just fall from the sky: Toward multi-scale pro-poor climate policy. In Handbook on climate change and human security. Edward Elgar Publishing.
Steffen, W., Richardson, K., Rockström, J., Cornell, S. E., Fetzer, I., Bennett, E. M., Biggs, R., Carpenter, S. R., De Vries, W., De Wit, C. A., & others. (2015). Planetary boundaries: Guiding human development on a changing planet. Science, 347(6223).
Wendling, Z. A., Emerson, J. W., Sherbinin, A. de, & Esty, D. C. (2020). Environmental performance index. Yale University and Columbia University: New Haven, CT, USA.