Importamos las siguientes librerias
library(survival)
library(survminer)
library(flexsurv)
library(dplyr)
Cargamos datos
times = rexp(500)
event = rbinom(500,1,.7)
df = data.frame(times=times, event=event)
Surv(times, event)
surv_obj=Surv(times, event)
s_fit = flexsurvreg(surv_obj~1, data = df, dist = "exp")
s_fit$n.risk
s_fit$n.event
s_fit$n.censor
s_fit$surv
s_fit$cumhanz
Graficamos funciones de sobrevivencia
plot(surv_obj)

ggsurvplot(s_fit,df)

ggsurvplot(s_fit,cumevents= TRUE)

ggsurvplot(s_fit,fun ="cumhaz")

ggsurvplot(s_fit,surv.median.line = "hv")

ggsurvplot(s_fit,risk.table =TRUE)

Riesgo de distribuciones
Distribucion exponencial con lamda = 3
rate=3
exp=rexp(100, rate=rate)
f_exp=dexp(exp, rate = rate)
F_exp=pexp(exp, rate = rate)
S_exp=1-F_exp
h_exp=f_exp/S_exp
plot(h_exp)

Gamma con parametros (100,2)
g =rgamma(100, 2)
f_g=dgamma(g, 2)
F_g=pgamma(g, 2)
S_g=1-F_g
h_t=f_g/S_g
plot(sort(h_t),type="l")

Weibull con parametros (100,2,3)
a =rweibull(100,shape = 2,scale = 3)
f_w=dweibull(a,shape = 2,scale = 3)
F_w=pweibull(a,shape = 2,scale = 3)
S_w=1-F_w
h_w=f_w/S_w
plot(h_w %>% sort)

plot de una funcion
plot(1:100,18*(1:100))

Funcion comparar riesgo
Exponencial
riesgo_exp<- function(n1,rate1,n2,rate2) {
exp1=rexp(n1, rate=rate1)
f_exp1=dexp(exp1, rate = rate1)
F_exp1=pexp(exp1, rate = rate1)
S_exp1=1-F_exp1
h_exp1=f_exp1/S_exp1
exp2=rexp(n2, rate=rate2)
f_exp2=dexp(exp2, rate = rate2)
F_exp2=pexp(exp2, rate = rate2)
S_exp2=1-F_exp2
h_exp2=f_exp2/S_exp2
plot(h_exp2)
par(new=TRUE)
plot(h_exp1)
title(" compracion riesgo de exponenciales")
}
riesgo_exp(100,3,100,5)

Gamma
riesgo_gamma<- function(n1,rate1,n2,rate2) {
g1 =rgamma(n1,rate1)
f_g1=dgamma(g1,rate1)
F_g1=pgamma(g1,rate1)
S_g1=1-F_g1
h_t1=f_g1/S_g1
g2 =rgamma(n2,rate2)
f_g2=dgamma(g2,rate2)
F_g2=pgamma(g2,rate2)
S_g2=1-F_g2
h_t2=f_g2/S_g2
plot(sort(h_t2),type="l")
par(new=TRUE)
plot(sort(h_t1),type="l")
title(" compracion riesgo gammas")
}
riesgo_gamma(100,3,100,5)

Weibull
riesgo_weibull<- function(n1,sh1,sc1,n2,sh2,sc2) {
w1 =rweibull(n1,shape =sh1,scale =sc1)
f_w1=dweibull(w1,shape =sh1,scale =sc1)
F_w1=pweibull(w1,shape =sh1,scale =sc1)
S_w1=1-F_w1
h_w1=f_w1/S_w1
w2 =rweibull(n2,shape =sh2,scale =sc2)
f_w2=dweibull(w2,shape =sh2,scale =sc2)
F_w2=pweibull(w2,shape =sh2,scale =sc2)
S_w2=1-F_w2
h_w2=f_w2/S_w2
plot(h_w2 %>% sort)
par(new=TRUE)
plot(h_w1 %>% sort)
title(" compracion weibull")
}
riesgo_weibull(100,2,3,100,3,5)

LS0tDQp0aXRsZTogIlNPQlJFVklWRU5DSUEiDQphdXRob3I6ICJDcnV6IE1hdGVvIERhdmlkIg0KZGF0ZTogIiINCm91dHB1dDoNCiAgaHRtbF9ub3RlYm9vazoNCiAgICB0b2M6IHRydWUNCiAgICB0b2NfZGVwdGg6IDUNCiAgICB0b2NfZmxvYXQ6DQogICAgICBjb2xsYXBzZWQ6IGZhbHNlDQogICAgICBzbW9vb3RoX3Njcm9sbDogdHJ1ZQ0KICBodG1sX2RvY3VtZW50Og0KICAgIHRvYzogdHJ1ZQ0KICBwZGZfZG9jdW1lbnQ6DQogICAgdG9jOiB0cnVlDQpsYW5nOiBlcy1FUw0KLS0tDQpJbXBvcnRhbW9zIGxhcyBzaWd1aWVudGVzIGxpYnJlcmlhcw0KYGBge3J9DQpsaWJyYXJ5KHN1cnZpdmFsKQ0KbGlicmFyeShzdXJ2bWluZXIpDQpsaWJyYXJ5KGZsZXhzdXJ2KQ0KbGlicmFyeShkcGx5cikNCmBgYA0KDQpDYXJnYW1vcyBkYXRvcw0KYGBge3J9DQp0aW1lcyA9IHJleHAoNTAwKQ0KZXZlbnQgPSByYmlub20oNTAwLDEsLjcpDQpkZiA9IGRhdGEuZnJhbWUodGltZXM9dGltZXMsIGV2ZW50PWV2ZW50KQ0KU3Vydih0aW1lcywgZXZlbnQpDQpzdXJ2X29iaj1TdXJ2KHRpbWVzLCBldmVudCkNCnNfZml0ID0gZmxleHN1cnZyZWcoc3Vydl9vYmp+MSwgZGF0YSA9IGRmLCBkaXN0ID0gImV4cCIpDQoNCnNfZml0JG4ucmlzaw0Kc19maXQkbi5ldmVudA0Kc19maXQkbi5jZW5zb3INCnNfZml0JHN1cnYNCnNfZml0JGN1bWhhbnoNCg0KYGBgDQojIEdyYWZpY2Ftb3MgZnVuY2lvbmVzIGRlIHNvYnJldml2ZW5jaWENCmBgYHtyfQ0KcGxvdChzdXJ2X29iaikNCmdnc3VydnBsb3Qoc19maXQsZGYpDQoNCmdnc3VydnBsb3Qoc19maXQsY3VtZXZlbnRzPSBUUlVFKQ0KZ2dzdXJ2cGxvdChzX2ZpdCxmdW4gPSJjdW1oYXoiKQ0KZ2dzdXJ2cGxvdChzX2ZpdCxzdXJ2Lm1lZGlhbi5saW5lID0gImh2IikNCmdnc3VydnBsb3Qoc19maXQscmlzay50YWJsZSA9VFJVRSkNCg0KYGBgDQoNCiMgUmllc2dvIGRlIGRpc3RyaWJ1Y2lvbmVzDQoNCiMjIERpc3RyaWJ1Y2lvbiBleHBvbmVuY2lhbCBjb24gbGFtZGEgPSAzDQpgYGB7cn0NCnJhdGU9Mw0KZXhwPXJleHAoMTAwLCByYXRlPXJhdGUpDQpmX2V4cD1kZXhwKGV4cCwgcmF0ZSA9IHJhdGUpDQpGX2V4cD1wZXhwKGV4cCwgcmF0ZSA9IHJhdGUpDQpTX2V4cD0xLUZfZXhwDQpoX2V4cD1mX2V4cC9TX2V4cA0KcGxvdChoX2V4cCkNCmBgYA0KDQojIyBHYW1tYSBjb24gcGFyYW1ldHJvcyAoMTAwLDIpDQpgYGB7cn0NCmcgPXJnYW1tYSgxMDAsIDIpDQpmX2c9ZGdhbW1hKGcsIDIpDQpGX2c9cGdhbW1hKGcsIDIpDQpTX2c9MS1GX2cNCmhfdD1mX2cvU19nDQpwbG90KHNvcnQoaF90KSx0eXBlPSJsIikNCmBgYA0KDQojIyBXZWlidWxsIGNvbiBwYXJhbWV0cm9zICgxMDAsMiwzKSANCmBgYHtyfQ0KYSA9cndlaWJ1bGwoMTAwLHNoYXBlID0gIDIsc2NhbGUgPSAzKQ0KZl93PWR3ZWlidWxsKGEsc2hhcGUgPSAgMixzY2FsZSA9IDMpDQpGX3c9cHdlaWJ1bGwoYSxzaGFwZSA9ICAyLHNjYWxlID0gMykNClNfdz0xLUZfdw0KaF93PWZfdy9TX3cNCnBsb3QoaF93ICU+JSBzb3J0KQ0KDQpgYGANCg0KIyMgcGxvdCBkZSB1bmEgZnVuY2lvbg0KYGBge3J9DQpwbG90KDE6MTAwLDE4KigxOjEwMCkpDQpgYGANCg0KDQojIEZ1bmNpb24gY29tcGFyYXIgcmllc2dvDQoNCiMjIEV4cG9uZW5jaWFsDQpgYGB7cn0NCnJpZXNnb19leHA8LSBmdW5jdGlvbihuMSxyYXRlMSxuMixyYXRlMikgew0KICBleHAxPXJleHAobjEsIHJhdGU9cmF0ZTEpDQogIGZfZXhwMT1kZXhwKGV4cDEsIHJhdGUgPSByYXRlMSkNCiAgRl9leHAxPXBleHAoZXhwMSwgcmF0ZSA9IHJhdGUxKQ0KICBTX2V4cDE9MS1GX2V4cDENCiAgaF9leHAxPWZfZXhwMS9TX2V4cDENCiAgDQogIGV4cDI9cmV4cChuMiwgcmF0ZT1yYXRlMikNCiAgZl9leHAyPWRleHAoZXhwMiwgcmF0ZSA9IHJhdGUyKQ0KICBGX2V4cDI9cGV4cChleHAyLCByYXRlID0gcmF0ZTIpDQogIFNfZXhwMj0xLUZfZXhwMg0KICBoX2V4cDI9Zl9leHAyL1NfZXhwMg0KICANCiAgcGxvdChoX2V4cDIpDQogIHBhcihuZXc9VFJVRSkNCiAgcGxvdChoX2V4cDEpDQogIHRpdGxlKCIgY29tcHJhY2lvbiByaWVzZ28gZGUgZXhwb25lbmNpYWxlcyIpDQp9DQpyaWVzZ29fZXhwKDEwMCwzLDEwMCw1KQ0KDQpgYGANCiMjIEdhbW1hDQpgYGB7cn0NCnJpZXNnb19nYW1tYTwtIGZ1bmN0aW9uKG4xLHJhdGUxLG4yLHJhdGUyKSB7DQogIGcxID1yZ2FtbWEobjEscmF0ZTEpDQogIGZfZzE9ZGdhbW1hKGcxLHJhdGUxKQ0KICBGX2cxPXBnYW1tYShnMSxyYXRlMSkNCiAgU19nMT0xLUZfZzENCiAgaF90MT1mX2cxL1NfZzENCiAgDQogIGcyID1yZ2FtbWEobjIscmF0ZTIpDQogIGZfZzI9ZGdhbW1hKGcyLHJhdGUyKQ0KICBGX2cyPXBnYW1tYShnMixyYXRlMikNCiAgU19nMj0xLUZfZzINCiAgaF90Mj1mX2cyL1NfZzINCiAgDQogIHBsb3Qoc29ydChoX3QyKSx0eXBlPSJsIikNCiAgcGFyKG5ldz1UUlVFKQ0KICBwbG90KHNvcnQoaF90MSksdHlwZT0ibCIpDQogIHRpdGxlKCIgY29tcHJhY2lvbiByaWVzZ28gZ2FtbWFzIikNCn0NCnJpZXNnb19nYW1tYSgxMDAsMywxMDAsNSkNCg0KYGBgDQoNCiMgV2VpYnVsbA0KYGBge3J9DQpyaWVzZ29fd2VpYnVsbDwtIGZ1bmN0aW9uKG4xLHNoMSxzYzEsbjIsc2gyLHNjMikgew0KICB3MSA9cndlaWJ1bGwobjEsc2hhcGUgPXNoMSxzY2FsZSA9c2MxKQ0KICBmX3cxPWR3ZWlidWxsKHcxLHNoYXBlID1zaDEsc2NhbGUgPXNjMSkNCiAgRl93MT1wd2VpYnVsbCh3MSxzaGFwZSA9c2gxLHNjYWxlID1zYzEpDQogIFNfdzE9MS1GX3cxDQogIGhfdzE9Zl93MS9TX3cxDQogIHcyID1yd2VpYnVsbChuMixzaGFwZSA9c2gyLHNjYWxlID1zYzIpDQogIGZfdzI9ZHdlaWJ1bGwodzIsc2hhcGUgPXNoMixzY2FsZSA9c2MyKQ0KICBGX3cyPXB3ZWlidWxsKHcyLHNoYXBlID1zaDIsc2NhbGUgPXNjMikNCiAgU193Mj0xLUZfdzINCiAgaF93Mj1mX3cyL1NfdzINCiAgDQogIHBsb3QoaF93MiAlPiUgc29ydCkNCiAgcGFyKG5ldz1UUlVFKQ0KICBwbG90KGhfdzEgJT4lIHNvcnQpDQogIHRpdGxlKCIgY29tcHJhY2lvbiB3ZWlidWxsIikNCn0NCnJpZXNnb193ZWlidWxsKDEwMCwyLDMsMTAwLDMsNSkNCg0KYGBgDQoNCg==