Analysis of the mtcars Dataset

Variables and MPG

Pavitra Desai

21.11.2021

First, you will create a Shiny application and deploy it on Rstudio’s servers.Second, you will use Slidify or Rstudio Presenter to prepare a reproducible pitch presentation about your application.

For Part 1 URL: https://github.com/snowball20/DDP

mtcars Dataset

Motor Trend Car Road Tests

library(datasets)
head(mtcars, 3)
##                mpg cyl disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4     21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag 21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
## Datsun 710    22.8   4  108  93 3.85 2.320 18.61  1  1    4    1

mtcars Dataset - Format

A data frame with 32 observations on 11 variables.

Index Field Detail
[, 1] mpg Miles/(US) gallon
[, 2] cyl Number of cylinders
[, 3] disp Displacement (cu.in.)
[, 4] hp Gross horsepower
[, 5] drat Rear axle ratio
[, 6] wt Weight (lb/1000)
[, 7] qsec 1/4 mile time
[, 8] vs V/S
[, 9] am Transmission (0 = automatic, 1 = manual)
[,10] gear Number of forward gears
[,11] carb Number of carburetors

Analysis - Main Code

  formulaTextPoint <- reactive({
    paste("mpg ~", "as.integer(", input$variable, ")")  })
  
  fit <- reactive({
    lm(as.formula(formulaTextPoint()), data=mpgData)  })
  ...
  output$fit <- renderPrint({
    summary(fit()) })
  
  output$mpgPlot <- renderPlot({
    with(mpgData, {
      plot(as.formula(formulaTextPoint()))
      abline(fit(), col=2)
    })  })