## Warning: package 'tibble' was built under R version 4.0.4
Exercise 10
Using R, provide the solution for any exercise in either Chapter 4 or Chapter 7 of the calculus textbook. If you are unsure of your solution, post your concerns.
A boat is being pulled into a dock at a constant rate of 30 ft/min by a winch located 10 above the deck of the boat. \[x^2+y^2=z^2\\
dz/dt=30ft/m \\
x^2 + 10^2 = z^2 \\ and \\
x=sqrt(z^2-100) \]
Take the derivative
\[2xdx/dt=2zdz/dt \] Solve for dx/dt \[dx/dt=z/sqrtz2−100\]
At what rate is the boat approaching the dock when the boat is:
- 50 feet out?
z <-50
dz_dt <- 30
z/(sqrt(z^2 - 100)) * dz_dt
## [1] 30.61862
b.15 feet out?
z <-15
z/(sqrt(z^2 - 100)) * dz_dt
## [1] 40.24922
c.1 foot from the dock?
z <- 1
z/(sqrt(z^2 - 100)) * dz_dt
## Warning in sqrt(z^2 - 100): NaNs produced
## [1] NaN
- What happens when the length of rope pulling in the boat is less than 10 feet long?
#answer:We obtain a negative square root
LS0tDQp0aXRsZTogIldlZWsgMTMgZGlzY3Vzc2lvbiINCmF1dGhvcjogIkF1dGhvciBOYW1lIg0KZGF0ZTogImByIFN5cy5EYXRlKClgIg0Kb3V0cHV0OiBvcGVuaW50cm86OmxhYl9yZXBvcnQNCi0tLQ0KDQpgYGB7ciBsb2FkLXBhY2thZ2VzLCBtZXNzYWdlPUZBTFNFfQ0KbGlicmFyeSh0aWR5dmVyc2UpDQpsaWJyYXJ5KG9wZW5pbnRybykNCmBgYA0KDQojIyMgRXhlcmNpc2UgMTANCg0KVXNpbmcgUiwgcHJvdmlkZSB0aGUgc29sdXRpb24gZm9yIGFueSBleGVyY2lzZSBpbiBlaXRoZXIgQ2hhcHRlciA0IG9yIENoYXB0ZXIgNyBvZiB0aGUgY2FsY3VsdXMgdGV4dGJvb2suIElmIHlvdSBhcmUgdW5zdXJlIG9mIHlvdXIgc29sdXRpb24sIHBvc3QgeW91ciBjb25jZXJucy4NCg0KQSBib2F0IGlzIGJlaW5nIHB1bGxlZCBpbnRvIGEgZG9jayBhdCBhIGNvbnN0YW50IHJhdGUgb2YgMzAgZnQvbWluIGJ5IGEgd2luY2ggbG9jYXRlZCAxMCBhYm92ZSB0aGUgZGVjayBvZiB0aGUgYm9hdC4NCiQkeF4yK3leMj16XjJcXA0KZHovZHQ9MzBmdC9tIFxcDQp4XjIgKyAxMF4yICA9IHpeMiBcXCBhbmQgXFwNCng9c3FydCh6XjItMTAwKSAkJA0KDQpUYWtlIHRoZSBkZXJpdmF0aXZlIA0KDQokJDJ4ZHgvZHQ9Mnpkei9kdCAkJCANClNvbHZlIGZvciBkeC9kdCANCiQkZHgvZHQ9ei9zcXJ0ejLiiJIxMDAkJA0KDQpBdCB3aGF0IHJhdGUgaXMgdGhlIGJvYXQgYXBwcm9hY2hpbmcgdGhlIGRvY2sgd2hlbiB0aGUgYm9hdCBpczoNCg0KYSkgNTAgZmVldCBvdXQ/DQoNCiANCg0KYGBge3J9DQoNCnogPC01MA0KZHpfZHQgPC0gMzANCnovKHNxcnQoel4yIC0gMTAwKSkgKiBkel9kdA0KDQpgYGANCg0KYi4xNSBmZWV0IG91dD8NCg0KYGBge3J9DQp6IDwtMTUNCnovKHNxcnQoel4yIC0gMTAwKSkgKiBkel9kdA0KDQoNCmBgYA0KYy4xIGZvb3QgZnJvbSB0aGUgZG9jaz8NCmBgYHtyfQ0KeiA8LSAxDQp6LyhzcXJ0KHpeMiAtIDEwMCkpICogZHpfZHQNCmBgYA0KDQpkLiBXaGF0IGhhcHBlbnMgd2hlbiB0aGUgbGVuZ3RoIG9mIHJvcGUgcHVsbGluZyBpbiB0aGUgYm9hdCBpcyBsZXNzIHRoYW4gMTAgZmVldCBsb25nPw0KICANCmBgYHtyfQ0KDQojYW5zd2VyOldlIG9idGFpbiBhIG5lZ2F0aXZlIHNxdWFyZSByb290DQpgYGANCg==