Packages Used:
library(coronavirus) #Data Source
library(dplyr)
library(scales)
library(hrbrthemes)
library(gganimate)
- Variables:
cases: Number of cases on given date.
date: date in YYYY-MM-DD format.
# filter by US confirmed cases from the data set
us_cases <- coronavirus %>%
filter(type == "confirmed", country == "US")
total_us_cases <- sum(us_cases$cases)
paste('Total US Cases:', prettyNum(total_us_cases,big.mark=","), 'as of ',max(us_cases$date))
## [1] "Total US Cases: 44,684,150 as of 2021-10-13"
india_cases <- coronavirus %>%
filter(type == "confirmed", country == "India")
total_india_cases<- sum(india_cases$cases)
paste('Total India Cases:', prettyNum(total_india_cases,big.mark=","), 'as of ', max(india_cases$date))
## [1] "Total India Cases: 34,020,730 as of 2021-10-13"
combined_series <- rbind(india_cases, us_cases)
p <- ggplot(data = combined_series, aes(x = date, y = cases, color = country)) +
geom_line(size = 0.5) +
labs(title = "COVID-19 Cases in the US and India",
x = "Date",
subtitle = "Jan 2020 - October 2021",
caption = "source: John Hopkins University",
y = "Number of Cases",
color = "Country") +
scale_x_date(date_breaks = '2 month',
labels = date_format("%b-%y")) +
scale_y_continuous(limits = c(0, 400000),
breaks = seq(0, 400000, 50000)) +
theme_ipsum() +
theme(axis.text.x=element_text(angle=60, hjust=1))
p
