Generar números aleatorio y representarlo en una gráfica campana o de Gauss
Se utiliza la función rnorm() para generar aleatorios.
\[ \sigma \text { se requiere } \\ \mu \text { se necesita} \]
library(cowplot) # Gráficos
library(ggplot2) # Gráfico
library(mosaic)
media <- 5
desv <- 2
n <- 100
numeros <- rnorm(n = n, mean = media, sd = desv)
numeros
## [1] 5.883913 5.442420 6.943465 4.979429 9.896310 4.207674 8.361425
## [8] 6.006011 3.698223 8.407870 3.885962 1.701978 2.159215 5.083282
## [15] 3.419712 4.224217 5.537837 5.420614 3.630576 8.047111 8.234826
## [22] 6.807786 3.842514 3.887710 4.043153 4.882533 5.452063 4.519735
## [29] 7.990351 7.177183 4.890745 3.729536 4.439470 3.446041 3.133515
## [36] 4.568649 9.054571 6.590641 2.056679 3.980545 6.954199 3.470808
## [43] 5.532373 6.850622 7.084323 4.211267 3.397825 2.762871 5.851189
## [50] 5.764024 2.933336 4.038237 2.353062 8.758337 4.765961 3.296203
## [57] 4.682382 5.221840 6.453820 6.240812 3.168924 6.741808 3.086879
## [64] 5.879915 6.157772 4.488388 10.570272 4.480945 6.306169 7.567795
## [71] 6.825096 4.746248 8.012838 6.531422 3.961455 5.294372 5.533932
## [78] 1.476451 4.634597 9.805363 4.122096 3.857513 3.673397 5.706412
## [85] 7.085409 3.754443 1.789413 6.496742 4.250091 4.195541 8.861469
## [92] 8.018085 4.938707 6.542580 3.561365 6.712767 5.136847 3.426159
## [99] 7.386327 7.739719
numeros <- data.frame(nums = numeros)
g1 <- ggplot(data = numeros) +
geom_point(aes(x=nums, y= dnorm(x = nums, mean = media, sd = desv)), col='red') +
geom_line(aes(x=nums, y= dnorm(x = nums, mean = media, sd = desv)), col='blue')
g2 <- plotDist(dist = "norm", mean = media, sd = desv)
plot_grid(g1, g2, nrow=1, ncol=2)
\[ P (x <= 2) \]
prob <- round(pnorm(q = 2, mean = media, sd = desv) * 100, 2)
prob
## [1] 6.68
g3 <- plotDist("norm", mean = media, sd = desv, groups = x <= 2, type = "h", xlab ="Valores de la variable continua X", ylab = "Densidad", main='Densidad',sub = paste('Me= ', media, ' D.St=', desv, "P=",prob ))
plot_grid(g1, g2, g3, nrow=2, ncol=2)
\[ 1 - P(x < 2) \]
prob1 <- round((1 - pnorm(q = 2, mean = media, sd = desv)) * 100, 2)
prob2 <- round(pnorm(q = 2, mean = media, sd = desv, lower.tail = FALSE) * 100, 2 )
prob1; prob2
## [1] 93.32
## [1] 93.32
g4 <- plotDist("norm", mean = media, sd = desv, groups = x >= 2, type = "h", xlab ="Valores de la variable continua X", ylab = "Densidad", main='Densidad',sub = paste('Me= ', media, ' D.St=', desv, "P=",prob1 ))
plot_grid(g1, g2, g3, g4, nrow=2, ncol=2)
\[ Prob = P(x=4) - P(x=2) \]
prob <- pnorm(q = 4, mean = media, sd = desv) - pnorm(q = 2, mean = media, sd = desv)
prob <- round(prob * 100, 2)
prob
## [1] 24.17
g5 <- plotDist("norm", mean = media, sd = desv, groups = x >= 2 & x <=4, type = "h", xlab ="Valores de la variable continua X", ylab = "Densidad", main='Densidad',sub = paste('Me= ', media, ' D.St=', desv, "P=",prob ))
g5