#1 Download the dataframe pirate_survey_witherrors.txt from http://nathanieldphillips.com/wp-content/uploads/2015/05/pirate_survey_witherrors.txt. The data are stored in a tab-separated text file with headers. Load the dataframe into an object called pirates.errors. Because it’s tab-separated, use sep = “\t”.
pirates.errors <- read.table(file = "http://nathanieldphillips.com/wp-content/uploads/2015/05/pirate_survey_witherrors.txt",header= T, sep="\t", stringsAsFactors=F)
#pirates.errors
#2 Let’s clean up the dataframe. Some of the values don’t seem to be appropriate. For example, when I look at the column sex, I see some bad values. For each of the columns, try to figure out which values are appropriate (hint: use table()), and recode all inappropriate values as NA.
table(pirates.errors$sex)
##
## depends on who is offering female
## 1 466
## male other
## 490 41
## sure I'll have some yes please!
## 1 1
pirates.errors$sex[!(pirates.errors$sex %in% c("male", "female", "other/NA"))] <- NA
pirates.errors$headband[!(pirates.errors$headband %in% c("yes", "no"))] <- NA
pirates.errors$age[!(pirates.errors$age %in% c(1:120))] <- NA
pirates.errors$tchests.found[!(pirates.errors$tchests.found %in% c(1:99))] <- NA
pirates.errors$parrots.lifetime[!(pirates.errors$parrots.lifetime %in% c(1:99))] <- NA
table(pirates.errors$favorite.pirate)
##
## Anicetus Blackbeard Edward Low Hook Jack Sparrow
## 117 100 113 114 450
## Lewis Scot your mom
## 96 10
pirates.errors$favorite.pirate[!(pirates.errors$favorite.pirate %in% c("Anicetus","Blackbeard","Edward Low", "Hook", "Jack Sparrow", "Lewis Scot"))] <- NA
table(pirates.errors$sword.type)
##
## banana cutlass sabre scimitar
## 39 842 62 57
#3 A fellow pirate captain wants to know if there is a relationship between the sex of my pirates and the number of treasure chests they have found. Using aggregate() figure out the mean number of treasure chests found by males, females, and other.
pirates <- read.table(file = "http://nathanieldphillips.com/wp-content/uploads/2015/05/pirate_survey_noerrors.txt" , header= T, sep="\t", stringsAsFactors=F)
aggregate (formula= tchests.found ~ sex, FUN=mean, data=pirates)
## sex tchests.found
## 1 female 7.353319
## 2 male 7.128049
## 3 other 8.048780
#4 Each pirate only uses one kind of sword - and their speed with their preferred sword is represented in sword.speed Which sword types tend to have the fastest (i.e.; smallest) sword speed? Test this by calculating the median sword.speed for each sword type
aggregate(formula= sword.speed ~ sword.type, FUN=median , data=pirates)
## sword.type sword.speed
## 1 banana 2.5859139
## 2 cutlass 0.4848266
## 3 sabre 1.7393120
## 4 scimitar 1.7559671
#5 Is there a relationship between whether or not a pirate wears a headband and their speed with their sword? Test this in two ways.
#First, calculate the median sword speed, separately for each level of headband use using aggregate(). What is your conclusion?
aggregate(formula= sword.speed ~ headband, FUN=median , data=pirates)
## headband sword.speed
## 1 no 1.0780988
## 2 yes 0.5375353
# -> pirates wearing a headband seem to be faster
aggregate(formula= sword.speed ~ sword.type + sex, FUN=median , data=pirates)
## sword.type sex sword.speed
## 1 banana female 2.6029223
## 2 cutlass female 0.4602335
## 3 sabre female 1.5953447
## 4 scimitar female 1.7907291
## 5 banana male 3.6661735
## 6 cutlass male 0.4960470
## 7 sabre male 2.0730914
## 8 scimitar male 1.6260470
## 9 banana other 1.5442277
## 10 cutlass other 0.6131719
## 11 sabre other 0.7028357
## 12 scimitar other 4.7844982
#Second, calculate the median sword speed for all combinations of both sex AND sword.type. -> Doesn't it mean HEADBAND instead of sex? Is there a mistake in the WPA?
aggregate(formula= sword.speed ~ sword.type + headband, FUN=median , data=pirates)
## sword.type headband sword.speed
## 1 banana no 2.1272891
## 2 cutlass no 0.3408127
## 3 sabre no 1.0295643
## 4 scimitar no 0.8387161
## 5 banana yes 7.9722183
## 6 cutlass yes 0.4897835
## 7 sabre yes 2.3635005
## 8 scimitar yes 4.9336595
# -> seems that the pirates without a headband are faster
#6 Does a pirate’s favorite pirate say anything about them? Do pirates whose favorite pirate is Hook have more tattoos on average or a faster sword speed than those whose favorite pirate is Blackbeard? Using dplyr, create the following aggregated dataframe which shows aggregated data depending on the pirates’ favorite pirate. Here are the four basic steps
#install.packages("dplyr")
#library("dplyr")
#pirates %>% group_by(favorite.pirate) %>% summarise (number.tattoos=mean(tattoos), mean.speed=mean(sword.speed))
#7 Is there a relationship between a pirate’s age and whether or not they went to Jack Sparrow’s School of Fashion and Piratry? Solve this in 2 steps.
log.vec <- pirates$college == "JSSFP"
aggregate(formula= age ~ log.vec + id, FUN=mean, data=pirates)
## log.vec id age
## 1 TRUE 1 35
## 2 FALSE 2 21
## 3 FALSE 3 27
## 4 FALSE 4 19
## 5 FALSE 5 31
## 6 FALSE 6 21
## 7 TRUE 7 31
## 8 TRUE 8 35
## 9 FALSE 9 26
## 10 FALSE 10 19
## 11 FALSE 11 20
## 12 FALSE 12 26
## 13 FALSE 13 25
## 14 FALSE 14 24
## 15 FALSE 15 28
## 16 FALSE 16 33
## 17 TRUE 17 35
## 18 TRUE 18 28
## 19 TRUE 19 41
## 20 FALSE 20 30
## 21 TRUE 21 28
## 22 FALSE 22 19
## 23 FALSE 23 22
## 24 FALSE 24 29
## 25 TRUE 25 27
## 26 FALSE 26 28
## 27 FALSE 27 29
## 28 TRUE 28 36
## 29 TRUE 29 35
## 30 FALSE 30 26
## 31 FALSE 31 28
## 32 FALSE 32 31
## 33 FALSE 33 24
## 34 FALSE 34 20
## 35 FALSE 35 24
## 36 TRUE 36 36
## 37 FALSE 37 30
## 38 TRUE 38 31
## 39 TRUE 39 34
## 40 FALSE 40 32
## 41 FALSE 41 26
## 42 TRUE 42 34
## 43 TRUE 43 30
## 44 TRUE 44 34
## 45 FALSE 45 29
## 46 FALSE 46 24
## 47 FALSE 47 25
## 48 TRUE 48 36
## 49 TRUE 49 32
## 50 FALSE 50 29
## 51 TRUE 51 33
## 52 FALSE 52 25
## 53 FALSE 53 22
## 54 FALSE 54 28
## 55 FALSE 55 18
## 56 FALSE 56 29
## 57 FALSE 57 30
## 58 FALSE 58 29
## 59 TRUE 59 34
## 60 FALSE 60 26
## 61 FALSE 61 23
## 62 TRUE 62 38
## 63 TRUE 63 40
## 64 FALSE 64 18
## 65 FALSE 65 30
## 66 TRUE 66 31
## 67 FALSE 67 30
## 68 TRUE 68 30
## 69 FALSE 69 23
## 70 FALSE 70 22
## 71 TRUE 71 36
## 72 FALSE 72 26
## 73 TRUE 73 30
## 74 FALSE 74 26
## 75 TRUE 75 31
## 76 FALSE 76 16
## 77 FALSE 77 24
## 78 FALSE 78 26
## 79 TRUE 79 34
## 80 TRUE 80 32
## 81 FALSE 81 27
## 82 FALSE 82 25
## 83 TRUE 83 42
## 84 TRUE 84 35
## 85 TRUE 85 31
## 86 TRUE 86 32
## 87 FALSE 87 22
## 88 FALSE 88 22
## 89 FALSE 89 28
## 90 TRUE 90 30
## 91 TRUE 91 33
## 92 TRUE 92 35
## 93 FALSE 93 15
## 94 FALSE 94 26
## 95 FALSE 95 28
## 96 TRUE 96 32
## 97 FALSE 97 24
## 98 FALSE 98 23
## 99 FALSE 99 30
## 100 FALSE 100 23
## 101 FALSE 101 21
## 102 TRUE 102 33
## 103 TRUE 103 30
## 104 FALSE 104 16
## 105 TRUE 105 32
## 106 TRUE 106 31
## 107 TRUE 107 33
## 108 TRUE 108 36
## 109 TRUE 109 30
## 110 FALSE 110 28
## 111 FALSE 111 22
## 112 FALSE 112 28
## 113 FALSE 113 22
## 114 TRUE 114 30
## 115 TRUE 115 35
## 116 FALSE 116 15
## 117 FALSE 117 18
## 118 TRUE 118 29
## 119 TRUE 119 31
## 120 FALSE 120 26
## 121 FALSE 121 21
## 122 FALSE 122 23
## 123 FALSE 123 21
## 124 FALSE 124 20
## 125 FALSE 125 27
## 126 TRUE 126 35
## 127 FALSE 127 24
## 128 FALSE 128 22
## 129 FALSE 129 28
## 130 TRUE 130 31
## 131 TRUE 131 29
## 132 FALSE 132 18
## 133 FALSE 133 30
## 134 FALSE 134 27
## 135 TRUE 135 36
## 136 FALSE 136 21
## 137 FALSE 137 27
## 138 FALSE 138 27
## 139 TRUE 139 33
## 140 TRUE 140 41
## 141 FALSE 141 24
## 142 TRUE 142 34
## 143 FALSE 143 30
## 144 FALSE 144 23
## 145 FALSE 145 25
## 146 TRUE 146 34
## 147 FALSE 147 26
## 148 FALSE 148 25
## 149 FALSE 149 30
## 150 FALSE 150 18
## 151 TRUE 151 32
## 152 TRUE 152 32
## 153 TRUE 153 34
## 154 TRUE 154 35
## 155 FALSE 155 23
## 156 FALSE 156 18
## 157 FALSE 157 25
## 158 TRUE 158 29
## 159 FALSE 159 17
## 160 FALSE 160 23
## 161 FALSE 161 24
## 162 FALSE 162 24
## 163 TRUE 163 32
## 164 FALSE 164 29
## 165 TRUE 165 30
## 166 FALSE 166 30
## 167 FALSE 167 25
## 168 TRUE 168 32
## 169 TRUE 169 29
## 170 FALSE 170 24
## 171 FALSE 171 20
## 172 TRUE 172 36
## 173 TRUE 173 43
## 174 FALSE 174 28
## 175 TRUE 175 30
## 176 FALSE 176 26
## 177 TRUE 177 34
## 178 TRUE 178 29
## 179 FALSE 179 26
## 180 TRUE 180 37
## 181 FALSE 181 27
## 182 FALSE 182 29
## 183 TRUE 183 33
## 184 FALSE 184 25
## 185 TRUE 185 31
## 186 FALSE 186 26
## 187 TRUE 187 32
## 188 FALSE 188 22
## 189 FALSE 189 28
## 190 FALSE 190 29
## 191 FALSE 191 16
## 192 FALSE 192 23
## 193 TRUE 193 33
## 194 FALSE 194 22
## 195 FALSE 195 24
## 196 TRUE 196 34
## 197 FALSE 197 19
## 198 FALSE 198 11
## 199 TRUE 199 36
## 200 FALSE 200 26
## 201 FALSE 201 29
## 202 TRUE 202 31
## 203 TRUE 203 35
## 204 FALSE 204 16
## 205 TRUE 205 34
## 206 TRUE 206 31
## 207 TRUE 207 30
## 208 TRUE 208 35
## 209 FALSE 209 15
## 210 FALSE 210 18
## 211 FALSE 211 24
## 212 TRUE 212 32
## 213 FALSE 213 22
## 214 TRUE 214 33
## 215 FALSE 215 24
## 216 FALSE 216 23
## 217 TRUE 217 29
## 218 TRUE 218 34
## 219 FALSE 219 25
## 220 FALSE 220 25
## 221 TRUE 221 30
## 222 TRUE 222 31
## 223 TRUE 223 33
## 224 FALSE 224 20
## 225 FALSE 225 21
## 226 FALSE 226 30
## 227 FALSE 227 22
## 228 FALSE 228 19
## 229 FALSE 229 23
## 230 FALSE 230 28
## 231 FALSE 231 24
## 232 FALSE 232 24
## 233 TRUE 233 37
## 234 FALSE 234 28
## 235 FALSE 235 26
## 236 FALSE 236 23
## 237 FALSE 237 23
## 238 TRUE 238 34
## 239 FALSE 239 28
## 240 FALSE 240 21
## 241 FALSE 241 22
## 242 TRUE 242 35
## 243 FALSE 243 23
## 244 TRUE 244 40
## 245 FALSE 245 27
## 246 FALSE 246 25
## 247 FALSE 247 27
## 248 TRUE 248 37
## 249 FALSE 249 26
## 250 FALSE 250 25
## 251 FALSE 251 27
## 252 FALSE 252 21
## 253 FALSE 253 24
## 254 FALSE 254 23
## 255 FALSE 255 30
## 256 FALSE 256 23
## 257 TRUE 257 35
## 258 TRUE 258 30
## 259 FALSE 259 30
## 260 TRUE 260 38
## 261 TRUE 261 32
## 262 TRUE 262 33
## 263 TRUE 263 32
## 264 FALSE 264 20
## 265 TRUE 265 31
## 266 FALSE 266 20
## 267 FALSE 267 25
## 268 FALSE 268 29
## 269 FALSE 269 28
## 270 FALSE 270 31
## 271 TRUE 271 37
## 272 TRUE 272 32
## 273 FALSE 273 24
## 274 FALSE 274 23
## 275 TRUE 275 30
## 276 FALSE 276 28
## 277 TRUE 277 33
## 278 FALSE 278 29
## 279 TRUE 279 33
## 280 FALSE 280 28
## 281 FALSE 281 31
## 282 FALSE 282 21
## 283 FALSE 283 27
## 284 FALSE 284 27
## 285 FALSE 285 29
## 286 FALSE 286 26
## 287 FALSE 287 26
## 288 FALSE 288 23
## 289 FALSE 289 26
## 290 FALSE 290 28
## 291 FALSE 291 28
## 292 FALSE 292 23
## 293 FALSE 293 30
## 294 FALSE 294 22
## 295 FALSE 295 28
## 296 FALSE 296 18
## 297 FALSE 297 26
## 298 FALSE 298 21
## 299 TRUE 299 32
## 300 FALSE 300 21
## 301 FALSE 301 23
## 302 TRUE 302 41
## 303 FALSE 303 20
## 304 FALSE 304 27
## 305 FALSE 305 15
## 306 FALSE 306 30
## 307 TRUE 307 36
## 308 TRUE 308 32
## 309 TRUE 309 32
## 310 FALSE 310 25
## 311 FALSE 311 25
## 312 FALSE 312 24
## 313 TRUE 313 34
## 314 FALSE 314 28
## 315 FALSE 315 21
## 316 FALSE 316 24
## 317 FALSE 317 29
## 318 TRUE 318 29
## 319 FALSE 319 23
## 320 FALSE 320 24
## 321 TRUE 321 36
## 322 FALSE 322 28
## 323 TRUE 323 36
## 324 TRUE 324 31
## 325 FALSE 325 24
## 326 TRUE 326 30
## 327 TRUE 327 26
## 328 FALSE 328 21
## 329 FALSE 329 30
## 330 FALSE 330 19
## 331 TRUE 331 37
## 332 FALSE 332 24
## 333 TRUE 333 39
## 334 FALSE 334 30
## 335 FALSE 335 29
## 336 FALSE 336 20
## 337 FALSE 337 25
## 338 TRUE 338 32
## 339 FALSE 339 13
## 340 TRUE 340 34
## 341 TRUE 341 32
## 342 TRUE 342 29
## 343 FALSE 343 26
## 344 FALSE 344 24
## 345 TRUE 345 42
## 346 FALSE 346 18
## 347 FALSE 347 30
## 348 TRUE 348 36
## 349 FALSE 349 28
## 350 TRUE 350 33
## 351 TRUE 351 32
## 352 FALSE 352 26
## 353 TRUE 353 33
## 354 FALSE 354 24
## 355 TRUE 355 33
## 356 FALSE 356 27
## 357 TRUE 357 46
## 358 FALSE 358 28
## 359 FALSE 359 29
## 360 FALSE 360 28
## 361 TRUE 361 31
## 362 FALSE 362 27
## 363 FALSE 363 23
## 364 FALSE 364 14
## 365 FALSE 365 25
## 366 FALSE 366 26
## 367 FALSE 367 30
## 368 FALSE 368 21
## 369 FALSE 369 29
## 370 TRUE 370 33
## 371 FALSE 371 24
## 372 TRUE 372 35
## 373 TRUE 373 31
## 374 FALSE 374 24
## 375 TRUE 375 27
## 376 FALSE 376 30
## 377 TRUE 377 31
## 378 FALSE 378 23
## 379 FALSE 379 29
## 380 FALSE 380 24
## 381 TRUE 381 35
## 382 TRUE 382 34
## 383 TRUE 383 32
## 384 FALSE 384 20
## 385 TRUE 385 28
## 386 FALSE 386 21
## 387 FALSE 387 31
## 388 TRUE 388 32
## 389 TRUE 389 34
## 390 TRUE 390 31
## 391 FALSE 391 24
## 392 TRUE 392 34
## 393 TRUE 393 39
## 394 FALSE 394 28
## 395 FALSE 395 26
## 396 FALSE 396 11
## 397 FALSE 397 22
## 398 FALSE 398 24
## 399 FALSE 399 20
## 400 FALSE 400 25
## 401 FALSE 401 29
## 402 TRUE 402 33
## 403 FALSE 403 22
## 404 TRUE 404 34
## 405 TRUE 405 36
## 406 TRUE 406 36
## 407 FALSE 407 25
## 408 FALSE 408 24
## 409 FALSE 409 31
## 410 TRUE 410 36
## 411 FALSE 411 30
## 412 FALSE 412 23
## 413 FALSE 413 21
## 414 FALSE 414 20
## 415 FALSE 415 19
## 416 FALSE 416 25
## 417 FALSE 417 27
## 418 FALSE 418 26
## 419 FALSE 419 23
## 420 FALSE 420 22
## 421 TRUE 421 32
## 422 FALSE 422 23
## 423 TRUE 423 31
## 424 FALSE 424 29
## 425 TRUE 425 35
## 426 FALSE 426 24
## 427 FALSE 427 24
## 428 FALSE 428 27
## 429 TRUE 429 35
## 430 FALSE 430 25
## 431 TRUE 431 32
## 432 FALSE 432 22
## 433 TRUE 433 30
## 434 TRUE 434 34
## 435 FALSE 435 20
## 436 FALSE 436 24
## 437 FALSE 437 27
## 438 TRUE 438 29
## 439 TRUE 439 31
## 440 TRUE 440 31
## 441 FALSE 441 22
## 442 TRUE 442 35
## 443 TRUE 443 30
## 444 TRUE 444 33
## 445 TRUE 445 34
## 446 FALSE 446 22
## 447 FALSE 447 23
## 448 TRUE 448 41
## 449 TRUE 449 42
## 450 FALSE 450 22
## 451 TRUE 451 35
## 452 FALSE 452 19
## 453 TRUE 453 28
## 454 FALSE 454 27
## 455 TRUE 455 28
## 456 FALSE 456 26
## 457 TRUE 457 39
## 458 FALSE 458 24
## 459 FALSE 459 16
## 460 FALSE 460 21
## 461 FALSE 461 23
## 462 FALSE 462 24
## 463 FALSE 463 28
## 464 TRUE 464 31
## 465 TRUE 465 38
## 466 FALSE 466 16
## 467 TRUE 467 31
## 468 FALSE 468 18
## 469 FALSE 469 27
## 470 FALSE 470 24
## 471 FALSE 471 22
## 472 TRUE 472 33
## 473 FALSE 473 29
## 474 FALSE 474 24
## 475 FALSE 475 23
## 476 TRUE 476 36
## 477 FALSE 477 30
## 478 FALSE 478 18
## 479 TRUE 479 28
## 480 TRUE 480 35
## 481 FALSE 481 25
## 482 FALSE 482 31
## 483 FALSE 483 13
## 484 FALSE 484 25
## 485 FALSE 485 23
## 486 FALSE 486 22
## 487 FALSE 487 27
## 488 TRUE 488 32
## 489 TRUE 489 29
## 490 FALSE 490 20
## 491 FALSE 491 30
## 492 TRUE 492 35
## 493 TRUE 493 32
## 494 FALSE 494 27
## 495 FALSE 495 25
## 496 FALSE 496 21
## 497 TRUE 497 39
## 498 FALSE 498 31
## 499 TRUE 499 31
## 500 FALSE 500 30
## 501 FALSE 501 27
## 502 FALSE 502 19
## 503 TRUE 503 29
## 504 TRUE 504 30
## 505 FALSE 505 23
## 506 TRUE 506 35
## 507 TRUE 507 36
## 508 FALSE 508 23
## 509 TRUE 509 36
## 510 FALSE 510 31
## 511 FALSE 511 18
## 512 FALSE 512 22
## 513 FALSE 513 30
## 514 FALSE 514 26
## 515 TRUE 515 28
## 516 TRUE 516 32
## 517 FALSE 517 27
## 518 FALSE 518 18
## 519 TRUE 519 32
## 520 FALSE 520 28
## 521 FALSE 521 24
## 522 FALSE 522 25
## 523 FALSE 523 18
## 524 FALSE 524 24
## 525 TRUE 525 33
## 526 FALSE 526 20
## 527 TRUE 527 34
## 528 FALSE 528 29
## 529 FALSE 529 27
## 530 TRUE 530 37
## 531 TRUE 531 31
## 532 FALSE 532 30
## 533 TRUE 533 29
## 534 FALSE 534 24
## 535 TRUE 535 34
## 536 FALSE 536 22
## 537 FALSE 537 29
## 538 FALSE 538 20
## 539 TRUE 539 29
## 540 TRUE 540 33
## 541 FALSE 541 20
## 542 FALSE 542 21
## 543 FALSE 543 17
## 544 FALSE 544 26
## 545 FALSE 545 24
## 546 FALSE 546 20
## 547 FALSE 547 23
## 548 FALSE 548 25
## 549 FALSE 549 10
## 550 TRUE 550 33
## 551 FALSE 551 17
## 552 TRUE 552 36
## 553 TRUE 553 33
## 554 TRUE 554 31
## 555 FALSE 555 22
## 556 FALSE 556 33
## 557 FALSE 557 25
## 558 TRUE 558 32
## 559 FALSE 559 24
## 560 FALSE 560 29
## 561 FALSE 561 24
## 562 FALSE 562 21
## 563 TRUE 563 34
## 564 TRUE 564 32
## 565 FALSE 565 26
## 566 TRUE 566 32
## 567 FALSE 567 23
## 568 TRUE 568 29
## 569 FALSE 569 23
## 570 TRUE 570 32
## 571 TRUE 571 33
## 572 FALSE 572 26
## 573 TRUE 573 29
## 574 TRUE 574 34
## 575 TRUE 575 32
## 576 TRUE 576 31
## 577 FALSE 577 28
## 578 TRUE 578 29
## 579 FALSE 579 24
## 580 FALSE 580 22
## 581 FALSE 581 28
## 582 FALSE 582 30
## 583 FALSE 583 27
## 584 TRUE 584 34
## 585 FALSE 585 18
## 586 FALSE 586 30
## 587 FALSE 587 29
## 588 TRUE 588 35
## 589 TRUE 589 31
## 590 FALSE 590 21
## 591 FALSE 591 28
## 592 FALSE 592 16
## 593 FALSE 593 28
## 594 FALSE 594 27
## 595 FALSE 595 29
## 596 FALSE 596 25
## 597 FALSE 597 27
## 598 FALSE 598 21
## 599 TRUE 599 34
## 600 FALSE 600 29
## 601 FALSE 601 22
## 602 TRUE 602 35
## 603 FALSE 603 29
## 604 TRUE 604 38
## 605 FALSE 605 24
## 606 FALSE 606 24
## 607 TRUE 607 30
## 608 FALSE 608 27
## 609 FALSE 609 29
## 610 TRUE 610 33
## 611 FALSE 611 29
## 612 FALSE 612 18
## 613 FALSE 613 26
## 614 TRUE 614 32
## 615 FALSE 615 26
## 616 FALSE 616 23
## 617 FALSE 617 28
## 618 TRUE 618 30
## 619 FALSE 619 19
## 620 TRUE 620 39
## 621 FALSE 621 19
## 622 TRUE 622 45
## 623 FALSE 623 28
## 624 TRUE 624 32
## 625 TRUE 625 35
## 626 FALSE 626 20
## 627 FALSE 627 24
## 628 TRUE 628 32
## 629 FALSE 629 23
## 630 FALSE 630 26
## 631 FALSE 631 28
## 632 TRUE 632 48
## 633 TRUE 633 31
## 634 FALSE 634 24
## 635 FALSE 635 23
## 636 TRUE 636 37
## 637 TRUE 637 38
## 638 FALSE 638 25
## 639 TRUE 639 35
## 640 TRUE 640 33
## 641 FALSE 641 25
## 642 TRUE 642 32
## 643 FALSE 643 11
## 644 FALSE 644 22
## 645 TRUE 645 31
## 646 TRUE 646 31
## 647 FALSE 647 31
## 648 TRUE 648 34
## 649 TRUE 649 29
## 650 TRUE 650 36
## 651 TRUE 651 36
## 652 TRUE 652 31
## 653 TRUE 653 35
## 654 FALSE 654 30
## 655 FALSE 655 23
## 656 TRUE 656 33
## 657 FALSE 657 27
## 658 FALSE 658 27
## 659 FALSE 659 19
## 660 FALSE 660 26
## 661 FALSE 661 23
## 662 FALSE 662 22
## 663 FALSE 663 28
## 664 FALSE 664 29
## 665 TRUE 665 28
## 666 FALSE 666 23
## 667 FALSE 667 25
## 668 FALSE 668 24
## 669 FALSE 669 29
## 670 FALSE 670 28
## 671 FALSE 671 26
## 672 FALSE 672 24
## 673 FALSE 673 24
## 674 TRUE 674 32
## 675 TRUE 675 34
## 676 FALSE 676 27
## 677 FALSE 677 20
## 678 TRUE 678 40
## 679 TRUE 679 36
## 680 TRUE 680 28
## 681 TRUE 681 36
## 682 TRUE 682 34
## 683 TRUE 683 34
## 684 TRUE 684 34
## 685 FALSE 685 26
## 686 FALSE 686 19
## 687 FALSE 687 27
## 688 FALSE 688 18
## 689 FALSE 689 30
## 690 FALSE 690 27
## 691 FALSE 691 25
## 692 FALSE 692 28
## 693 FALSE 693 28
## 694 FALSE 694 31
## 695 FALSE 695 25
## 696 TRUE 696 29
## 697 FALSE 697 21
## 698 FALSE 698 23
## 699 FALSE 699 28
## 700 FALSE 700 24
## 701 FALSE 701 20
## 702 TRUE 702 36
## 703 FALSE 703 21
## 704 FALSE 704 14
## 705 FALSE 705 26
## 706 TRUE 706 32
## 707 TRUE 707 37
## 708 FALSE 708 20
## 709 FALSE 709 19
## 710 FALSE 710 27
## 711 TRUE 711 32
## 712 FALSE 712 25
## 713 TRUE 713 34
## 714 FALSE 714 14
## 715 TRUE 715 33
## 716 FALSE 716 27
## 717 TRUE 717 30
## 718 FALSE 718 25
## 719 FALSE 719 24
## 720 FALSE 720 17
## 721 FALSE 721 25
## 722 TRUE 722 34
## 723 FALSE 723 28
## 724 TRUE 724 34
## 725 FALSE 725 26
## 726 FALSE 726 27
## 727 FALSE 727 20
## 728 FALSE 728 19
## 729 TRUE 729 33
## 730 FALSE 730 21
## 731 FALSE 731 27
## 732 TRUE 732 29
## 733 FALSE 733 31
## 734 TRUE 734 33
## 735 FALSE 735 28
## 736 FALSE 736 22
## 737 FALSE 737 28
## 738 FALSE 738 25
## 739 TRUE 739 30
## 740 FALSE 740 25
## 741 TRUE 741 31
## 742 FALSE 742 29
## 743 FALSE 743 20
## 744 FALSE 744 24
## 745 TRUE 745 34
## 746 FALSE 746 28
## 747 FALSE 747 26
## 748 FALSE 748 21
## 749 TRUE 749 31
## 750 FALSE 750 33
## 751 FALSE 751 21
## 752 FALSE 752 23
## 753 FALSE 753 18
## 754 TRUE 754 31
## 755 TRUE 755 38
## 756 FALSE 756 26
## 757 FALSE 757 29
## 758 FALSE 758 28
## 759 FALSE 759 22
## 760 FALSE 760 27
## 761 FALSE 761 27
## 762 FALSE 762 25
## 763 FALSE 763 24
## 764 FALSE 764 9
## 765 TRUE 765 31
## 766 TRUE 766 32
## 767 TRUE 767 30
## 768 TRUE 768 35
## 769 TRUE 769 31
## 770 TRUE 770 29
## 771 FALSE 771 26
## 772 TRUE 772 36
## 773 FALSE 773 27
## 774 FALSE 774 20
## 775 FALSE 775 29
## 776 TRUE 776 32
## 777 FALSE 777 24
## 778 TRUE 778 42
## 779 FALSE 779 23
## 780 TRUE 780 30
## 781 FALSE 781 18
## 782 TRUE 782 39
## 783 FALSE 783 25
## 784 FALSE 784 29
## 785 TRUE 785 29
## 786 FALSE 786 25
## 787 TRUE 787 32
## 788 TRUE 788 35
## 789 FALSE 789 23
## 790 FALSE 790 19
## 791 FALSE 791 26
## 792 FALSE 792 28
## 793 TRUE 793 40
## 794 FALSE 794 27
## 795 FALSE 795 24
## 796 FALSE 796 23
## 797 FALSE 797 11
## 798 FALSE 798 28
## 799 FALSE 799 26
## 800 FALSE 800 28
## 801 TRUE 801 35
## 802 FALSE 802 22
## 803 TRUE 803 33
## 804 FALSE 804 24
## 805 FALSE 805 23
## 806 TRUE 806 35
## 807 FALSE 807 23
## 808 TRUE 808 34
## 809 FALSE 809 28
## 810 TRUE 810 35
## 811 TRUE 811 36
## 812 FALSE 812 26
## 813 FALSE 813 23
## 814 TRUE 814 33
## 815 FALSE 815 20
## 816 FALSE 816 24
## 817 FALSE 817 30
## 818 FALSE 818 29
## 819 FALSE 819 22
## 820 TRUE 820 38
## 821 TRUE 821 34
## 822 FALSE 822 26
## 823 FALSE 823 26
## 824 FALSE 824 25
## 825 FALSE 825 26
## 826 FALSE 826 20
## 827 TRUE 827 37
## 828 FALSE 828 27
## 829 TRUE 829 34
## 830 FALSE 830 26
## 831 FALSE 831 27
## 832 FALSE 832 24
## 833 FALSE 833 23
## 834 FALSE 834 27
## 835 FALSE 835 26
## 836 TRUE 836 32
## 837 FALSE 837 26
## 838 FALSE 838 26
## 839 TRUE 839 39
## 840 FALSE 840 29
## 841 FALSE 841 32
## 842 TRUE 842 38
## 843 TRUE 843 32
## 844 TRUE 844 30
## 845 TRUE 845 36
## 846 TRUE 846 30
## 847 TRUE 847 31
## 848 FALSE 848 17
## 849 FALSE 849 21
## 850 TRUE 850 33
## 851 FALSE 851 26
## 852 FALSE 852 30
## 853 FALSE 853 26
## 854 FALSE 854 25
## 855 FALSE 855 25
## 856 FALSE 856 22
## 857 FALSE 857 32
## 858 FALSE 858 19
## 859 TRUE 859 27
## 860 FALSE 860 25
## 861 FALSE 861 24
## 862 FALSE 862 30
## 863 FALSE 863 28
## 864 TRUE 864 30
## 865 FALSE 865 24
## 866 FALSE 866 22
## 867 FALSE 867 27
## 868 FALSE 868 26
## 869 FALSE 869 30
## 870 TRUE 870 40
## 871 FALSE 871 22
## 872 TRUE 872 41
## 873 FALSE 873 12
## 874 FALSE 874 22
## 875 TRUE 875 30
## 876 TRUE 876 31
## 877 FALSE 877 27
## 878 TRUE 878 37
## 879 FALSE 879 21
## 880 FALSE 880 31
## 881 FALSE 881 26
## 882 FALSE 882 30
## 883 FALSE 883 27
## 884 TRUE 884 36
## 885 TRUE 885 30
## 886 FALSE 886 26
## 887 FALSE 887 29
## 888 FALSE 888 22
## 889 FALSE 889 20
## 890 TRUE 890 32
## 891 TRUE 891 32
## 892 TRUE 892 29
## 893 FALSE 893 29
## 894 TRUE 894 32
## 895 FALSE 895 31
## 896 TRUE 896 32
## 897 TRUE 897 34
## 898 FALSE 898 25
## 899 FALSE 899 24
## 900 FALSE 900 21
## 901 FALSE 901 19
## 902 TRUE 902 29
## 903 TRUE 903 31
## 904 FALSE 904 20
## 905 FALSE 905 24
## 906 FALSE 906 26
## 907 TRUE 907 37
## 908 FALSE 908 30
## 909 TRUE 909 34
## 910 FALSE 910 20
## 911 FALSE 911 24
## 912 FALSE 912 23
## 913 TRUE 913 33
## 914 TRUE 914 34
## 915 FALSE 915 30
## 916 FALSE 916 19
## 917 TRUE 917 43
## 918 FALSE 918 23
## 919 TRUE 919 32
## 920 TRUE 920 36
## 921 FALSE 921 24
## 922 FALSE 922 25
## 923 TRUE 923 34
## 924 FALSE 924 24
## 925 TRUE 925 30
## 926 TRUE 926 34
## 927 FALSE 927 22
## 928 TRUE 928 26
## 929 FALSE 929 29
## 930 FALSE 930 27
## 931 FALSE 931 26
## 932 FALSE 932 23
## 933 FALSE 933 24
## 934 TRUE 934 36
## 935 TRUE 935 41
## 936 FALSE 936 21
## 937 TRUE 937 34
## 938 TRUE 938 29
## 939 FALSE 939 25
## 940 FALSE 940 24
## 941 TRUE 941 33
## 942 FALSE 942 24
## 943 TRUE 943 29
## 944 FALSE 944 23
## 945 TRUE 945 31
## 946 FALSE 946 26
## 947 FALSE 947 29
## 948 TRUE 948 37
## 949 FALSE 949 21
## 950 FALSE 950 25
## 951 TRUE 951 33
## 952 FALSE 952 30
## 953 FALSE 953 27
## 954 FALSE 954 23
## 955 TRUE 955 36
## 956 FALSE 956 25
## 957 TRUE 957 36
## 958 FALSE 958 19
## 959 FALSE 959 27
## 960 FALSE 960 23
## 961 FALSE 961 27
## 962 FALSE 962 14
## 963 FALSE 963 24
## 964 FALSE 964 20
## 965 TRUE 965 29
## 966 FALSE 966 27
## 967 FALSE 967 23
## 968 FALSE 968 26
## 969 FALSE 969 30
## 970 FALSE 970 26
## 971 FALSE 971 30
## 972 FALSE 972 16
## 973 FALSE 973 24
## 974 TRUE 974 32
## 975 TRUE 975 32
## 976 FALSE 976 30
## 977 FALSE 977 26
## 978 TRUE 978 38
## 979 FALSE 979 25
## 980 FALSE 980 25
## 981 FALSE 981 21
## 982 TRUE 982 32
## 983 FALSE 983 15
## 984 FALSE 984 24
## 985 FALSE 985 24
## 986 FALSE 986 26
## 987 TRUE 987 33
## 988 FALSE 988 31
## 989 FALSE 989 21
## 990 FALSE 990 11
## 991 TRUE 991 33
## 992 TRUE 992 31
## 993 TRUE 993 29
## 994 FALSE 994 28
## 995 FALSE 995 20
## 996 TRUE 996 31
## 997 TRUE 997 38
## 998 TRUE 998 35
## 999 FALSE 999 30
## 1000 FALSE 1000 20
#didn't know how to finish
#8 Is there a relationship between the number of tattoos a pirate has and the number of chests he/she has found?
plot(x=pirates$tattoos, y=pirates$tchests.found, xlab="tattoos", ylab= "tchests")

pirates$tattoos.cut5 <- cut(pirates$tattoos, breaks=4)
aggregate(formula= tchests.found ~ tattoos.cut5, FUN=median, data=pirates)
## tattoos.cut5 tchests.found
## 1 (-0.019,4.75] 3
## 2 (4.75,9.5] 5
## 3 (9.5,14.2] 5
## 4 (14.2,19] 8
plot(x=pirates$tattoos.cut5, y=pirates$tchests.found, main= "Number of tattoos and chests found", xlab="tattoos", ylab="median chests found" )
