#1 Download the dataframe pirate_survey_witherrors.txt from http://nathanieldphillips.com/wp-content/uploads/2015/05/pirate_survey_witherrors.txt. The data are stored in a tab-separated text file with headers. Load the dataframe into an object called pirates.errors. Because it’s tab-separated, use sep = “\t”.

pirates.errors <- read.table(file = "http://nathanieldphillips.com/wp-content/uploads/2015/05/pirate_survey_witherrors.txt",header= T, sep="\t", stringsAsFactors=F)
#pirates.errors
#2 Let’s clean up the dataframe. Some of the values don’t seem to be appropriate. For example, when I look at the column sex, I see some bad values. For each of the columns, try to figure out which values are appropriate (hint: use table()), and recode all inappropriate values as NA.

table(pirates.errors$sex)
## 
## depends on who is offering                     female 
##                          1                        466 
##                       male                      other 
##                        490                         41 
##        sure I'll have some                yes please! 
##                          1                          1
pirates.errors$sex[!(pirates.errors$sex %in% c("male", "female", "other/NA"))] <- NA
pirates.errors$headband[!(pirates.errors$headband %in% c("yes", "no"))] <- NA
pirates.errors$age[!(pirates.errors$age %in% c(1:120))] <- NA
pirates.errors$tchests.found[!(pirates.errors$tchests.found %in% c(1:99))] <- NA
pirates.errors$parrots.lifetime[!(pirates.errors$parrots.lifetime %in% c(1:99))] <- NA

table(pirates.errors$favorite.pirate)
## 
##     Anicetus   Blackbeard   Edward Low         Hook Jack Sparrow 
##          117          100          113          114          450 
##   Lewis Scot     your mom 
##           96           10
pirates.errors$favorite.pirate[!(pirates.errors$favorite.pirate %in% c("Anicetus","Blackbeard","Edward Low", "Hook", "Jack Sparrow", "Lewis Scot"))] <- NA
table(pirates.errors$sword.type)
## 
##   banana  cutlass    sabre scimitar 
##       39      842       62       57
#3 A fellow pirate captain wants to know if there is a relationship between the sex of my pirates and the number of treasure chests they have found. Using aggregate() figure out the mean number of treasure chests found by males, females, and other.

pirates <- read.table(file = "http://nathanieldphillips.com/wp-content/uploads/2015/05/pirate_survey_noerrors.txt" , header= T, sep="\t", stringsAsFactors=F)
aggregate (formula= tchests.found ~ sex, FUN=mean, data=pirates)
##      sex tchests.found
## 1 female      7.353319
## 2   male      7.128049
## 3  other      8.048780
#4 Each pirate only uses one kind of sword - and their speed with their preferred sword is represented in sword.speed Which sword types tend to have the fastest (i.e.; smallest) sword speed? Test this by calculating the median sword.speed for each sword type

aggregate(formula= sword.speed ~ sword.type, FUN=median , data=pirates)
##   sword.type sword.speed
## 1     banana   2.5859139
## 2    cutlass   0.4848266
## 3      sabre   1.7393120
## 4   scimitar   1.7559671
#5 Is there a relationship between whether or not a pirate wears a headband and their speed with their sword? Test this in two ways.

#First, calculate the median sword speed, separately for each level of headband use using aggregate(). What is your conclusion?

aggregate(formula= sword.speed ~ headband, FUN=median , data=pirates) 
##   headband sword.speed
## 1       no   1.0780988
## 2      yes   0.5375353
# -> pirates wearing a headband seem to be faster
aggregate(formula= sword.speed ~ sword.type + sex, FUN=median , data=pirates) 
##    sword.type    sex sword.speed
## 1      banana female   2.6029223
## 2     cutlass female   0.4602335
## 3       sabre female   1.5953447
## 4    scimitar female   1.7907291
## 5      banana   male   3.6661735
## 6     cutlass   male   0.4960470
## 7       sabre   male   2.0730914
## 8    scimitar   male   1.6260470
## 9      banana  other   1.5442277
## 10    cutlass  other   0.6131719
## 11      sabre  other   0.7028357
## 12   scimitar  other   4.7844982
#Second, calculate the median sword speed for all combinations of both sex AND sword.type. -> Doesn't it mean HEADBAND instead of sex? Is there a mistake in the WPA?

aggregate(formula= sword.speed ~ sword.type + headband, FUN=median , data=pirates) 
##   sword.type headband sword.speed
## 1     banana       no   2.1272891
## 2    cutlass       no   0.3408127
## 3      sabre       no   1.0295643
## 4   scimitar       no   0.8387161
## 5     banana      yes   7.9722183
## 6    cutlass      yes   0.4897835
## 7      sabre      yes   2.3635005
## 8   scimitar      yes   4.9336595
# -> seems that the pirates without a headband are faster
#6 Does a pirate’s favorite pirate say anything about them? Do pirates whose favorite pirate is Hook have more tattoos on average or a faster sword speed than those whose favorite pirate is Blackbeard? Using dplyr, create the following aggregated dataframe which shows aggregated data depending on the pirates’ favorite pirate. Here are the four basic steps

#install.packages("dplyr")
#library("dplyr")
#pirates %>% group_by(favorite.pirate) %>% summarise (number.tattoos=mean(tattoos), mean.speed=mean(sword.speed))
#7 Is there a relationship between a pirate’s age and whether or not they went to Jack Sparrow’s School of Fashion and Piratry? Solve this in 2 steps.

log.vec <- pirates$college == "JSSFP"
aggregate(formula=  age ~ log.vec + id, FUN=mean, data=pirates)
##      log.vec   id age
## 1       TRUE    1  35
## 2      FALSE    2  21
## 3      FALSE    3  27
## 4      FALSE    4  19
## 5      FALSE    5  31
## 6      FALSE    6  21
## 7       TRUE    7  31
## 8       TRUE    8  35
## 9      FALSE    9  26
## 10     FALSE   10  19
## 11     FALSE   11  20
## 12     FALSE   12  26
## 13     FALSE   13  25
## 14     FALSE   14  24
## 15     FALSE   15  28
## 16     FALSE   16  33
## 17      TRUE   17  35
## 18      TRUE   18  28
## 19      TRUE   19  41
## 20     FALSE   20  30
## 21      TRUE   21  28
## 22     FALSE   22  19
## 23     FALSE   23  22
## 24     FALSE   24  29
## 25      TRUE   25  27
## 26     FALSE   26  28
## 27     FALSE   27  29
## 28      TRUE   28  36
## 29      TRUE   29  35
## 30     FALSE   30  26
## 31     FALSE   31  28
## 32     FALSE   32  31
## 33     FALSE   33  24
## 34     FALSE   34  20
## 35     FALSE   35  24
## 36      TRUE   36  36
## 37     FALSE   37  30
## 38      TRUE   38  31
## 39      TRUE   39  34
## 40     FALSE   40  32
## 41     FALSE   41  26
## 42      TRUE   42  34
## 43      TRUE   43  30
## 44      TRUE   44  34
## 45     FALSE   45  29
## 46     FALSE   46  24
## 47     FALSE   47  25
## 48      TRUE   48  36
## 49      TRUE   49  32
## 50     FALSE   50  29
## 51      TRUE   51  33
## 52     FALSE   52  25
## 53     FALSE   53  22
## 54     FALSE   54  28
## 55     FALSE   55  18
## 56     FALSE   56  29
## 57     FALSE   57  30
## 58     FALSE   58  29
## 59      TRUE   59  34
## 60     FALSE   60  26
## 61     FALSE   61  23
## 62      TRUE   62  38
## 63      TRUE   63  40
## 64     FALSE   64  18
## 65     FALSE   65  30
## 66      TRUE   66  31
## 67     FALSE   67  30
## 68      TRUE   68  30
## 69     FALSE   69  23
## 70     FALSE   70  22
## 71      TRUE   71  36
## 72     FALSE   72  26
## 73      TRUE   73  30
## 74     FALSE   74  26
## 75      TRUE   75  31
## 76     FALSE   76  16
## 77     FALSE   77  24
## 78     FALSE   78  26
## 79      TRUE   79  34
## 80      TRUE   80  32
## 81     FALSE   81  27
## 82     FALSE   82  25
## 83      TRUE   83  42
## 84      TRUE   84  35
## 85      TRUE   85  31
## 86      TRUE   86  32
## 87     FALSE   87  22
## 88     FALSE   88  22
## 89     FALSE   89  28
## 90      TRUE   90  30
## 91      TRUE   91  33
## 92      TRUE   92  35
## 93     FALSE   93  15
## 94     FALSE   94  26
## 95     FALSE   95  28
## 96      TRUE   96  32
## 97     FALSE   97  24
## 98     FALSE   98  23
## 99     FALSE   99  30
## 100    FALSE  100  23
## 101    FALSE  101  21
## 102     TRUE  102  33
## 103     TRUE  103  30
## 104    FALSE  104  16
## 105     TRUE  105  32
## 106     TRUE  106  31
## 107     TRUE  107  33
## 108     TRUE  108  36
## 109     TRUE  109  30
## 110    FALSE  110  28
## 111    FALSE  111  22
## 112    FALSE  112  28
## 113    FALSE  113  22
## 114     TRUE  114  30
## 115     TRUE  115  35
## 116    FALSE  116  15
## 117    FALSE  117  18
## 118     TRUE  118  29
## 119     TRUE  119  31
## 120    FALSE  120  26
## 121    FALSE  121  21
## 122    FALSE  122  23
## 123    FALSE  123  21
## 124    FALSE  124  20
## 125    FALSE  125  27
## 126     TRUE  126  35
## 127    FALSE  127  24
## 128    FALSE  128  22
## 129    FALSE  129  28
## 130     TRUE  130  31
## 131     TRUE  131  29
## 132    FALSE  132  18
## 133    FALSE  133  30
## 134    FALSE  134  27
## 135     TRUE  135  36
## 136    FALSE  136  21
## 137    FALSE  137  27
## 138    FALSE  138  27
## 139     TRUE  139  33
## 140     TRUE  140  41
## 141    FALSE  141  24
## 142     TRUE  142  34
## 143    FALSE  143  30
## 144    FALSE  144  23
## 145    FALSE  145  25
## 146     TRUE  146  34
## 147    FALSE  147  26
## 148    FALSE  148  25
## 149    FALSE  149  30
## 150    FALSE  150  18
## 151     TRUE  151  32
## 152     TRUE  152  32
## 153     TRUE  153  34
## 154     TRUE  154  35
## 155    FALSE  155  23
## 156    FALSE  156  18
## 157    FALSE  157  25
## 158     TRUE  158  29
## 159    FALSE  159  17
## 160    FALSE  160  23
## 161    FALSE  161  24
## 162    FALSE  162  24
## 163     TRUE  163  32
## 164    FALSE  164  29
## 165     TRUE  165  30
## 166    FALSE  166  30
## 167    FALSE  167  25
## 168     TRUE  168  32
## 169     TRUE  169  29
## 170    FALSE  170  24
## 171    FALSE  171  20
## 172     TRUE  172  36
## 173     TRUE  173  43
## 174    FALSE  174  28
## 175     TRUE  175  30
## 176    FALSE  176  26
## 177     TRUE  177  34
## 178     TRUE  178  29
## 179    FALSE  179  26
## 180     TRUE  180  37
## 181    FALSE  181  27
## 182    FALSE  182  29
## 183     TRUE  183  33
## 184    FALSE  184  25
## 185     TRUE  185  31
## 186    FALSE  186  26
## 187     TRUE  187  32
## 188    FALSE  188  22
## 189    FALSE  189  28
## 190    FALSE  190  29
## 191    FALSE  191  16
## 192    FALSE  192  23
## 193     TRUE  193  33
## 194    FALSE  194  22
## 195    FALSE  195  24
## 196     TRUE  196  34
## 197    FALSE  197  19
## 198    FALSE  198  11
## 199     TRUE  199  36
## 200    FALSE  200  26
## 201    FALSE  201  29
## 202     TRUE  202  31
## 203     TRUE  203  35
## 204    FALSE  204  16
## 205     TRUE  205  34
## 206     TRUE  206  31
## 207     TRUE  207  30
## 208     TRUE  208  35
## 209    FALSE  209  15
## 210    FALSE  210  18
## 211    FALSE  211  24
## 212     TRUE  212  32
## 213    FALSE  213  22
## 214     TRUE  214  33
## 215    FALSE  215  24
## 216    FALSE  216  23
## 217     TRUE  217  29
## 218     TRUE  218  34
## 219    FALSE  219  25
## 220    FALSE  220  25
## 221     TRUE  221  30
## 222     TRUE  222  31
## 223     TRUE  223  33
## 224    FALSE  224  20
## 225    FALSE  225  21
## 226    FALSE  226  30
## 227    FALSE  227  22
## 228    FALSE  228  19
## 229    FALSE  229  23
## 230    FALSE  230  28
## 231    FALSE  231  24
## 232    FALSE  232  24
## 233     TRUE  233  37
## 234    FALSE  234  28
## 235    FALSE  235  26
## 236    FALSE  236  23
## 237    FALSE  237  23
## 238     TRUE  238  34
## 239    FALSE  239  28
## 240    FALSE  240  21
## 241    FALSE  241  22
## 242     TRUE  242  35
## 243    FALSE  243  23
## 244     TRUE  244  40
## 245    FALSE  245  27
## 246    FALSE  246  25
## 247    FALSE  247  27
## 248     TRUE  248  37
## 249    FALSE  249  26
## 250    FALSE  250  25
## 251    FALSE  251  27
## 252    FALSE  252  21
## 253    FALSE  253  24
## 254    FALSE  254  23
## 255    FALSE  255  30
## 256    FALSE  256  23
## 257     TRUE  257  35
## 258     TRUE  258  30
## 259    FALSE  259  30
## 260     TRUE  260  38
## 261     TRUE  261  32
## 262     TRUE  262  33
## 263     TRUE  263  32
## 264    FALSE  264  20
## 265     TRUE  265  31
## 266    FALSE  266  20
## 267    FALSE  267  25
## 268    FALSE  268  29
## 269    FALSE  269  28
## 270    FALSE  270  31
## 271     TRUE  271  37
## 272     TRUE  272  32
## 273    FALSE  273  24
## 274    FALSE  274  23
## 275     TRUE  275  30
## 276    FALSE  276  28
## 277     TRUE  277  33
## 278    FALSE  278  29
## 279     TRUE  279  33
## 280    FALSE  280  28
## 281    FALSE  281  31
## 282    FALSE  282  21
## 283    FALSE  283  27
## 284    FALSE  284  27
## 285    FALSE  285  29
## 286    FALSE  286  26
## 287    FALSE  287  26
## 288    FALSE  288  23
## 289    FALSE  289  26
## 290    FALSE  290  28
## 291    FALSE  291  28
## 292    FALSE  292  23
## 293    FALSE  293  30
## 294    FALSE  294  22
## 295    FALSE  295  28
## 296    FALSE  296  18
## 297    FALSE  297  26
## 298    FALSE  298  21
## 299     TRUE  299  32
## 300    FALSE  300  21
## 301    FALSE  301  23
## 302     TRUE  302  41
## 303    FALSE  303  20
## 304    FALSE  304  27
## 305    FALSE  305  15
## 306    FALSE  306  30
## 307     TRUE  307  36
## 308     TRUE  308  32
## 309     TRUE  309  32
## 310    FALSE  310  25
## 311    FALSE  311  25
## 312    FALSE  312  24
## 313     TRUE  313  34
## 314    FALSE  314  28
## 315    FALSE  315  21
## 316    FALSE  316  24
## 317    FALSE  317  29
## 318     TRUE  318  29
## 319    FALSE  319  23
## 320    FALSE  320  24
## 321     TRUE  321  36
## 322    FALSE  322  28
## 323     TRUE  323  36
## 324     TRUE  324  31
## 325    FALSE  325  24
## 326     TRUE  326  30
## 327     TRUE  327  26
## 328    FALSE  328  21
## 329    FALSE  329  30
## 330    FALSE  330  19
## 331     TRUE  331  37
## 332    FALSE  332  24
## 333     TRUE  333  39
## 334    FALSE  334  30
## 335    FALSE  335  29
## 336    FALSE  336  20
## 337    FALSE  337  25
## 338     TRUE  338  32
## 339    FALSE  339  13
## 340     TRUE  340  34
## 341     TRUE  341  32
## 342     TRUE  342  29
## 343    FALSE  343  26
## 344    FALSE  344  24
## 345     TRUE  345  42
## 346    FALSE  346  18
## 347    FALSE  347  30
## 348     TRUE  348  36
## 349    FALSE  349  28
## 350     TRUE  350  33
## 351     TRUE  351  32
## 352    FALSE  352  26
## 353     TRUE  353  33
## 354    FALSE  354  24
## 355     TRUE  355  33
## 356    FALSE  356  27
## 357     TRUE  357  46
## 358    FALSE  358  28
## 359    FALSE  359  29
## 360    FALSE  360  28
## 361     TRUE  361  31
## 362    FALSE  362  27
## 363    FALSE  363  23
## 364    FALSE  364  14
## 365    FALSE  365  25
## 366    FALSE  366  26
## 367    FALSE  367  30
## 368    FALSE  368  21
## 369    FALSE  369  29
## 370     TRUE  370  33
## 371    FALSE  371  24
## 372     TRUE  372  35
## 373     TRUE  373  31
## 374    FALSE  374  24
## 375     TRUE  375  27
## 376    FALSE  376  30
## 377     TRUE  377  31
## 378    FALSE  378  23
## 379    FALSE  379  29
## 380    FALSE  380  24
## 381     TRUE  381  35
## 382     TRUE  382  34
## 383     TRUE  383  32
## 384    FALSE  384  20
## 385     TRUE  385  28
## 386    FALSE  386  21
## 387    FALSE  387  31
## 388     TRUE  388  32
## 389     TRUE  389  34
## 390     TRUE  390  31
## 391    FALSE  391  24
## 392     TRUE  392  34
## 393     TRUE  393  39
## 394    FALSE  394  28
## 395    FALSE  395  26
## 396    FALSE  396  11
## 397    FALSE  397  22
## 398    FALSE  398  24
## 399    FALSE  399  20
## 400    FALSE  400  25
## 401    FALSE  401  29
## 402     TRUE  402  33
## 403    FALSE  403  22
## 404     TRUE  404  34
## 405     TRUE  405  36
## 406     TRUE  406  36
## 407    FALSE  407  25
## 408    FALSE  408  24
## 409    FALSE  409  31
## 410     TRUE  410  36
## 411    FALSE  411  30
## 412    FALSE  412  23
## 413    FALSE  413  21
## 414    FALSE  414  20
## 415    FALSE  415  19
## 416    FALSE  416  25
## 417    FALSE  417  27
## 418    FALSE  418  26
## 419    FALSE  419  23
## 420    FALSE  420  22
## 421     TRUE  421  32
## 422    FALSE  422  23
## 423     TRUE  423  31
## 424    FALSE  424  29
## 425     TRUE  425  35
## 426    FALSE  426  24
## 427    FALSE  427  24
## 428    FALSE  428  27
## 429     TRUE  429  35
## 430    FALSE  430  25
## 431     TRUE  431  32
## 432    FALSE  432  22
## 433     TRUE  433  30
## 434     TRUE  434  34
## 435    FALSE  435  20
## 436    FALSE  436  24
## 437    FALSE  437  27
## 438     TRUE  438  29
## 439     TRUE  439  31
## 440     TRUE  440  31
## 441    FALSE  441  22
## 442     TRUE  442  35
## 443     TRUE  443  30
## 444     TRUE  444  33
## 445     TRUE  445  34
## 446    FALSE  446  22
## 447    FALSE  447  23
## 448     TRUE  448  41
## 449     TRUE  449  42
## 450    FALSE  450  22
## 451     TRUE  451  35
## 452    FALSE  452  19
## 453     TRUE  453  28
## 454    FALSE  454  27
## 455     TRUE  455  28
## 456    FALSE  456  26
## 457     TRUE  457  39
## 458    FALSE  458  24
## 459    FALSE  459  16
## 460    FALSE  460  21
## 461    FALSE  461  23
## 462    FALSE  462  24
## 463    FALSE  463  28
## 464     TRUE  464  31
## 465     TRUE  465  38
## 466    FALSE  466  16
## 467     TRUE  467  31
## 468    FALSE  468  18
## 469    FALSE  469  27
## 470    FALSE  470  24
## 471    FALSE  471  22
## 472     TRUE  472  33
## 473    FALSE  473  29
## 474    FALSE  474  24
## 475    FALSE  475  23
## 476     TRUE  476  36
## 477    FALSE  477  30
## 478    FALSE  478  18
## 479     TRUE  479  28
## 480     TRUE  480  35
## 481    FALSE  481  25
## 482    FALSE  482  31
## 483    FALSE  483  13
## 484    FALSE  484  25
## 485    FALSE  485  23
## 486    FALSE  486  22
## 487    FALSE  487  27
## 488     TRUE  488  32
## 489     TRUE  489  29
## 490    FALSE  490  20
## 491    FALSE  491  30
## 492     TRUE  492  35
## 493     TRUE  493  32
## 494    FALSE  494  27
## 495    FALSE  495  25
## 496    FALSE  496  21
## 497     TRUE  497  39
## 498    FALSE  498  31
## 499     TRUE  499  31
## 500    FALSE  500  30
## 501    FALSE  501  27
## 502    FALSE  502  19
## 503     TRUE  503  29
## 504     TRUE  504  30
## 505    FALSE  505  23
## 506     TRUE  506  35
## 507     TRUE  507  36
## 508    FALSE  508  23
## 509     TRUE  509  36
## 510    FALSE  510  31
## 511    FALSE  511  18
## 512    FALSE  512  22
## 513    FALSE  513  30
## 514    FALSE  514  26
## 515     TRUE  515  28
## 516     TRUE  516  32
## 517    FALSE  517  27
## 518    FALSE  518  18
## 519     TRUE  519  32
## 520    FALSE  520  28
## 521    FALSE  521  24
## 522    FALSE  522  25
## 523    FALSE  523  18
## 524    FALSE  524  24
## 525     TRUE  525  33
## 526    FALSE  526  20
## 527     TRUE  527  34
## 528    FALSE  528  29
## 529    FALSE  529  27
## 530     TRUE  530  37
## 531     TRUE  531  31
## 532    FALSE  532  30
## 533     TRUE  533  29
## 534    FALSE  534  24
## 535     TRUE  535  34
## 536    FALSE  536  22
## 537    FALSE  537  29
## 538    FALSE  538  20
## 539     TRUE  539  29
## 540     TRUE  540  33
## 541    FALSE  541  20
## 542    FALSE  542  21
## 543    FALSE  543  17
## 544    FALSE  544  26
## 545    FALSE  545  24
## 546    FALSE  546  20
## 547    FALSE  547  23
## 548    FALSE  548  25
## 549    FALSE  549  10
## 550     TRUE  550  33
## 551    FALSE  551  17
## 552     TRUE  552  36
## 553     TRUE  553  33
## 554     TRUE  554  31
## 555    FALSE  555  22
## 556    FALSE  556  33
## 557    FALSE  557  25
## 558     TRUE  558  32
## 559    FALSE  559  24
## 560    FALSE  560  29
## 561    FALSE  561  24
## 562    FALSE  562  21
## 563     TRUE  563  34
## 564     TRUE  564  32
## 565    FALSE  565  26
## 566     TRUE  566  32
## 567    FALSE  567  23
## 568     TRUE  568  29
## 569    FALSE  569  23
## 570     TRUE  570  32
## 571     TRUE  571  33
## 572    FALSE  572  26
## 573     TRUE  573  29
## 574     TRUE  574  34
## 575     TRUE  575  32
## 576     TRUE  576  31
## 577    FALSE  577  28
## 578     TRUE  578  29
## 579    FALSE  579  24
## 580    FALSE  580  22
## 581    FALSE  581  28
## 582    FALSE  582  30
## 583    FALSE  583  27
## 584     TRUE  584  34
## 585    FALSE  585  18
## 586    FALSE  586  30
## 587    FALSE  587  29
## 588     TRUE  588  35
## 589     TRUE  589  31
## 590    FALSE  590  21
## 591    FALSE  591  28
## 592    FALSE  592  16
## 593    FALSE  593  28
## 594    FALSE  594  27
## 595    FALSE  595  29
## 596    FALSE  596  25
## 597    FALSE  597  27
## 598    FALSE  598  21
## 599     TRUE  599  34
## 600    FALSE  600  29
## 601    FALSE  601  22
## 602     TRUE  602  35
## 603    FALSE  603  29
## 604     TRUE  604  38
## 605    FALSE  605  24
## 606    FALSE  606  24
## 607     TRUE  607  30
## 608    FALSE  608  27
## 609    FALSE  609  29
## 610     TRUE  610  33
## 611    FALSE  611  29
## 612    FALSE  612  18
## 613    FALSE  613  26
## 614     TRUE  614  32
## 615    FALSE  615  26
## 616    FALSE  616  23
## 617    FALSE  617  28
## 618     TRUE  618  30
## 619    FALSE  619  19
## 620     TRUE  620  39
## 621    FALSE  621  19
## 622     TRUE  622  45
## 623    FALSE  623  28
## 624     TRUE  624  32
## 625     TRUE  625  35
## 626    FALSE  626  20
## 627    FALSE  627  24
## 628     TRUE  628  32
## 629    FALSE  629  23
## 630    FALSE  630  26
## 631    FALSE  631  28
## 632     TRUE  632  48
## 633     TRUE  633  31
## 634    FALSE  634  24
## 635    FALSE  635  23
## 636     TRUE  636  37
## 637     TRUE  637  38
## 638    FALSE  638  25
## 639     TRUE  639  35
## 640     TRUE  640  33
## 641    FALSE  641  25
## 642     TRUE  642  32
## 643    FALSE  643  11
## 644    FALSE  644  22
## 645     TRUE  645  31
## 646     TRUE  646  31
## 647    FALSE  647  31
## 648     TRUE  648  34
## 649     TRUE  649  29
## 650     TRUE  650  36
## 651     TRUE  651  36
## 652     TRUE  652  31
## 653     TRUE  653  35
## 654    FALSE  654  30
## 655    FALSE  655  23
## 656     TRUE  656  33
## 657    FALSE  657  27
## 658    FALSE  658  27
## 659    FALSE  659  19
## 660    FALSE  660  26
## 661    FALSE  661  23
## 662    FALSE  662  22
## 663    FALSE  663  28
## 664    FALSE  664  29
## 665     TRUE  665  28
## 666    FALSE  666  23
## 667    FALSE  667  25
## 668    FALSE  668  24
## 669    FALSE  669  29
## 670    FALSE  670  28
## 671    FALSE  671  26
## 672    FALSE  672  24
## 673    FALSE  673  24
## 674     TRUE  674  32
## 675     TRUE  675  34
## 676    FALSE  676  27
## 677    FALSE  677  20
## 678     TRUE  678  40
## 679     TRUE  679  36
## 680     TRUE  680  28
## 681     TRUE  681  36
## 682     TRUE  682  34
## 683     TRUE  683  34
## 684     TRUE  684  34
## 685    FALSE  685  26
## 686    FALSE  686  19
## 687    FALSE  687  27
## 688    FALSE  688  18
## 689    FALSE  689  30
## 690    FALSE  690  27
## 691    FALSE  691  25
## 692    FALSE  692  28
## 693    FALSE  693  28
## 694    FALSE  694  31
## 695    FALSE  695  25
## 696     TRUE  696  29
## 697    FALSE  697  21
## 698    FALSE  698  23
## 699    FALSE  699  28
## 700    FALSE  700  24
## 701    FALSE  701  20
## 702     TRUE  702  36
## 703    FALSE  703  21
## 704    FALSE  704  14
## 705    FALSE  705  26
## 706     TRUE  706  32
## 707     TRUE  707  37
## 708    FALSE  708  20
## 709    FALSE  709  19
## 710    FALSE  710  27
## 711     TRUE  711  32
## 712    FALSE  712  25
## 713     TRUE  713  34
## 714    FALSE  714  14
## 715     TRUE  715  33
## 716    FALSE  716  27
## 717     TRUE  717  30
## 718    FALSE  718  25
## 719    FALSE  719  24
## 720    FALSE  720  17
## 721    FALSE  721  25
## 722     TRUE  722  34
## 723    FALSE  723  28
## 724     TRUE  724  34
## 725    FALSE  725  26
## 726    FALSE  726  27
## 727    FALSE  727  20
## 728    FALSE  728  19
## 729     TRUE  729  33
## 730    FALSE  730  21
## 731    FALSE  731  27
## 732     TRUE  732  29
## 733    FALSE  733  31
## 734     TRUE  734  33
## 735    FALSE  735  28
## 736    FALSE  736  22
## 737    FALSE  737  28
## 738    FALSE  738  25
## 739     TRUE  739  30
## 740    FALSE  740  25
## 741     TRUE  741  31
## 742    FALSE  742  29
## 743    FALSE  743  20
## 744    FALSE  744  24
## 745     TRUE  745  34
## 746    FALSE  746  28
## 747    FALSE  747  26
## 748    FALSE  748  21
## 749     TRUE  749  31
## 750    FALSE  750  33
## 751    FALSE  751  21
## 752    FALSE  752  23
## 753    FALSE  753  18
## 754     TRUE  754  31
## 755     TRUE  755  38
## 756    FALSE  756  26
## 757    FALSE  757  29
## 758    FALSE  758  28
## 759    FALSE  759  22
## 760    FALSE  760  27
## 761    FALSE  761  27
## 762    FALSE  762  25
## 763    FALSE  763  24
## 764    FALSE  764   9
## 765     TRUE  765  31
## 766     TRUE  766  32
## 767     TRUE  767  30
## 768     TRUE  768  35
## 769     TRUE  769  31
## 770     TRUE  770  29
## 771    FALSE  771  26
## 772     TRUE  772  36
## 773    FALSE  773  27
## 774    FALSE  774  20
## 775    FALSE  775  29
## 776     TRUE  776  32
## 777    FALSE  777  24
## 778     TRUE  778  42
## 779    FALSE  779  23
## 780     TRUE  780  30
## 781    FALSE  781  18
## 782     TRUE  782  39
## 783    FALSE  783  25
## 784    FALSE  784  29
## 785     TRUE  785  29
## 786    FALSE  786  25
## 787     TRUE  787  32
## 788     TRUE  788  35
## 789    FALSE  789  23
## 790    FALSE  790  19
## 791    FALSE  791  26
## 792    FALSE  792  28
## 793     TRUE  793  40
## 794    FALSE  794  27
## 795    FALSE  795  24
## 796    FALSE  796  23
## 797    FALSE  797  11
## 798    FALSE  798  28
## 799    FALSE  799  26
## 800    FALSE  800  28
## 801     TRUE  801  35
## 802    FALSE  802  22
## 803     TRUE  803  33
## 804    FALSE  804  24
## 805    FALSE  805  23
## 806     TRUE  806  35
## 807    FALSE  807  23
## 808     TRUE  808  34
## 809    FALSE  809  28
## 810     TRUE  810  35
## 811     TRUE  811  36
## 812    FALSE  812  26
## 813    FALSE  813  23
## 814     TRUE  814  33
## 815    FALSE  815  20
## 816    FALSE  816  24
## 817    FALSE  817  30
## 818    FALSE  818  29
## 819    FALSE  819  22
## 820     TRUE  820  38
## 821     TRUE  821  34
## 822    FALSE  822  26
## 823    FALSE  823  26
## 824    FALSE  824  25
## 825    FALSE  825  26
## 826    FALSE  826  20
## 827     TRUE  827  37
## 828    FALSE  828  27
## 829     TRUE  829  34
## 830    FALSE  830  26
## 831    FALSE  831  27
## 832    FALSE  832  24
## 833    FALSE  833  23
## 834    FALSE  834  27
## 835    FALSE  835  26
## 836     TRUE  836  32
## 837    FALSE  837  26
## 838    FALSE  838  26
## 839     TRUE  839  39
## 840    FALSE  840  29
## 841    FALSE  841  32
## 842     TRUE  842  38
## 843     TRUE  843  32
## 844     TRUE  844  30
## 845     TRUE  845  36
## 846     TRUE  846  30
## 847     TRUE  847  31
## 848    FALSE  848  17
## 849    FALSE  849  21
## 850     TRUE  850  33
## 851    FALSE  851  26
## 852    FALSE  852  30
## 853    FALSE  853  26
## 854    FALSE  854  25
## 855    FALSE  855  25
## 856    FALSE  856  22
## 857    FALSE  857  32
## 858    FALSE  858  19
## 859     TRUE  859  27
## 860    FALSE  860  25
## 861    FALSE  861  24
## 862    FALSE  862  30
## 863    FALSE  863  28
## 864     TRUE  864  30
## 865    FALSE  865  24
## 866    FALSE  866  22
## 867    FALSE  867  27
## 868    FALSE  868  26
## 869    FALSE  869  30
## 870     TRUE  870  40
## 871    FALSE  871  22
## 872     TRUE  872  41
## 873    FALSE  873  12
## 874    FALSE  874  22
## 875     TRUE  875  30
## 876     TRUE  876  31
## 877    FALSE  877  27
## 878     TRUE  878  37
## 879    FALSE  879  21
## 880    FALSE  880  31
## 881    FALSE  881  26
## 882    FALSE  882  30
## 883    FALSE  883  27
## 884     TRUE  884  36
## 885     TRUE  885  30
## 886    FALSE  886  26
## 887    FALSE  887  29
## 888    FALSE  888  22
## 889    FALSE  889  20
## 890     TRUE  890  32
## 891     TRUE  891  32
## 892     TRUE  892  29
## 893    FALSE  893  29
## 894     TRUE  894  32
## 895    FALSE  895  31
## 896     TRUE  896  32
## 897     TRUE  897  34
## 898    FALSE  898  25
## 899    FALSE  899  24
## 900    FALSE  900  21
## 901    FALSE  901  19
## 902     TRUE  902  29
## 903     TRUE  903  31
## 904    FALSE  904  20
## 905    FALSE  905  24
## 906    FALSE  906  26
## 907     TRUE  907  37
## 908    FALSE  908  30
## 909     TRUE  909  34
## 910    FALSE  910  20
## 911    FALSE  911  24
## 912    FALSE  912  23
## 913     TRUE  913  33
## 914     TRUE  914  34
## 915    FALSE  915  30
## 916    FALSE  916  19
## 917     TRUE  917  43
## 918    FALSE  918  23
## 919     TRUE  919  32
## 920     TRUE  920  36
## 921    FALSE  921  24
## 922    FALSE  922  25
## 923     TRUE  923  34
## 924    FALSE  924  24
## 925     TRUE  925  30
## 926     TRUE  926  34
## 927    FALSE  927  22
## 928     TRUE  928  26
## 929    FALSE  929  29
## 930    FALSE  930  27
## 931    FALSE  931  26
## 932    FALSE  932  23
## 933    FALSE  933  24
## 934     TRUE  934  36
## 935     TRUE  935  41
## 936    FALSE  936  21
## 937     TRUE  937  34
## 938     TRUE  938  29
## 939    FALSE  939  25
## 940    FALSE  940  24
## 941     TRUE  941  33
## 942    FALSE  942  24
## 943     TRUE  943  29
## 944    FALSE  944  23
## 945     TRUE  945  31
## 946    FALSE  946  26
## 947    FALSE  947  29
## 948     TRUE  948  37
## 949    FALSE  949  21
## 950    FALSE  950  25
## 951     TRUE  951  33
## 952    FALSE  952  30
## 953    FALSE  953  27
## 954    FALSE  954  23
## 955     TRUE  955  36
## 956    FALSE  956  25
## 957     TRUE  957  36
## 958    FALSE  958  19
## 959    FALSE  959  27
## 960    FALSE  960  23
## 961    FALSE  961  27
## 962    FALSE  962  14
## 963    FALSE  963  24
## 964    FALSE  964  20
## 965     TRUE  965  29
## 966    FALSE  966  27
## 967    FALSE  967  23
## 968    FALSE  968  26
## 969    FALSE  969  30
## 970    FALSE  970  26
## 971    FALSE  971  30
## 972    FALSE  972  16
## 973    FALSE  973  24
## 974     TRUE  974  32
## 975     TRUE  975  32
## 976    FALSE  976  30
## 977    FALSE  977  26
## 978     TRUE  978  38
## 979    FALSE  979  25
## 980    FALSE  980  25
## 981    FALSE  981  21
## 982     TRUE  982  32
## 983    FALSE  983  15
## 984    FALSE  984  24
## 985    FALSE  985  24
## 986    FALSE  986  26
## 987     TRUE  987  33
## 988    FALSE  988  31
## 989    FALSE  989  21
## 990    FALSE  990  11
## 991     TRUE  991  33
## 992     TRUE  992  31
## 993     TRUE  993  29
## 994    FALSE  994  28
## 995    FALSE  995  20
## 996     TRUE  996  31
## 997     TRUE  997  38
## 998     TRUE  998  35
## 999    FALSE  999  30
## 1000   FALSE 1000  20
#didn't know how to finish
#8 Is there a relationship between the number of tattoos a pirate has and the number of chests he/she has found?

plot(x=pirates$tattoos, y=pirates$tchests.found, xlab="tattoos", ylab= "tchests")

pirates$tattoos.cut5 <-  cut(pirates$tattoos, breaks=4)

aggregate(formula=  tchests.found ~ tattoos.cut5, FUN=median, data=pirates)
##    tattoos.cut5 tchests.found
## 1 (-0.019,4.75]             3
## 2    (4.75,9.5]             5
## 3    (9.5,14.2]             5
## 4     (14.2,19]             8
plot(x=pirates$tattoos.cut5, y=pirates$tchests.found, main= "Number of tattoos and chests found", xlab="tattoos", ylab="median chests found" )