Attribute importance weight considered when buying a car (BMW, Lexus and Mercedes). Data collected from 73 students (24 MBAs and 49 undergrad).
The number of clusters in this dataset was selected using the majority rule based on 26 different criteria to determine the optimal number of clusters
Group.1 Trendy Styling Reliability Sportiness Performance Comfort
1 1 -0.70539614 -0.08208834 0.7158620 -0.6405175 0.6850577 -0.1901877
2 2 -0.01577854 -0.42490717 -0.2815854 0.5005211 -0.0989237 0.5862104
3 3 1.14725137 0.85521724 -0.6566056 0.1634624 -0.9192806 -0.6979431
Cell Contents
|-------------------------|
| N |
| N / Row Total |
| N / Col Total |
|-------------------------|
Total Observations in Table: 73
| h_cluster
seg_data$MBA | 1 | 2 | 3 | Row Total |
-------------|-----------|-----------|-----------|-----------|
MBA | 14 | 6 | 4 | 24 |
| 0.583 | 0.250 | 0.167 | 0.329 |
| 0.519 | 0.207 | 0.235 | |
-------------|-----------|-----------|-----------|-----------|
Undergrad | 13 | 23 | 13 | 49 |
| 0.265 | 0.469 | 0.265 | 0.671 |
| 0.481 | 0.793 | 0.765 | |
-------------|-----------|-----------|-----------|-----------|
Column Total | 27 | 29 | 17 | 73 |
| 0.370 | 0.397 | 0.233 | |
-------------|-----------|-----------|-----------|-----------|
Statistics for All Table Factors
Pearson's Chi-squared test
------------------------------------------------------------
Chi^2 = 7.03013 d.f. = 2 p = 0.02974588
The analysis shows that while older students (MBAs) tend to emphasize performance, the younger ones (undergrad) tend to emphasize style and comfort. This relationship is significant at the 3% level (p-value) which means you could target these clusters using the education level variable.