# UNIVERSIDAD NACIONAL DEL ALTIPLANO
# INGENIERIA ESTADISTICA E INFORMATICA
# CURSO: SERIES DE TIEMPO

library(readxl)
## Warning: package 'readxl' was built under R version 4.0.2
library(lubridate)
## Warning: package 'lubridate' was built under R version 4.0.5
## 
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
## 
##     date, intersect, setdiff, union
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.0.5
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.3     v purrr   0.3.4
## v tibble  3.1.5     v dplyr   1.0.7
## v tidyr   1.1.4     v stringr 1.4.0
## v readr   2.0.2     v forcats 0.5.1
## Warning: package 'ggplot2' was built under R version 4.0.3
## Warning: package 'tibble' was built under R version 4.0.5
## Warning: package 'tidyr' was built under R version 4.0.5
## Warning: package 'readr' was built under R version 4.0.5
## Warning: package 'dplyr' was built under R version 4.0.5
## Warning: package 'forcats' was built under R version 4.0.5
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x lubridate::as.difftime() masks base::as.difftime()
## x lubridate::date()        masks base::date()
## x dplyr::filter()          masks stats::filter()
## x lubridate::intersect()   masks base::intersect()
## x dplyr::lag()             masks stats::lag()
## x lubridate::setdiff()     masks base::setdiff()
## x lubridate::union()       masks base::union()
library(car)
## Warning: package 'car' was built under R version 4.0.5
## Loading required package: carData
## 
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
## 
##     recode
## The following object is masked from 'package:purrr':
## 
##     some
library(tseries)
## Warning: package 'tseries' was built under R version 4.0.5
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
library(astsa)
## Warning: package 'astsa' was built under R version 4.0.5
library(foreign)
## Warning: package 'foreign' was built under R version 4.0.3
library(timsac)
## Warning: package 'timsac' was built under R version 4.0.3
library(vars)
## Warning: package 'vars' was built under R version 4.0.5
## Loading required package: MASS
## 
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
## 
##     select
## Loading required package: strucchange
## Warning: package 'strucchange' was built under R version 4.0.5
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## Loading required package: sandwich
## 
## Attaching package: 'strucchange'
## The following object is masked from 'package:stringr':
## 
##     boundary
## Loading required package: urca
## Warning: package 'urca' was built under R version 4.0.5
## Loading required package: lmtest
## Warning: package 'lmtest' was built under R version 4.0.2
library(lmtest)
library(mFilter)
## Warning: package 'mFilter' was built under R version 4.0.5
library(dynlm)
## Warning: package 'dynlm' was built under R version 4.0.5
library(nlme)
## Warning: package 'nlme' was built under R version 4.0.5
## 
## Attaching package: 'nlme'
## The following object is masked from 'package:dplyr':
## 
##     collapse
library(broom)
## Warning: package 'broom' was built under R version 4.0.5
library(kableExtra)
## Warning: package 'kableExtra' was built under R version 4.0.5
## 
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
## 
##     group_rows
library(knitr)
library(MASS)
library(parallel)
library(car)
library(mlogit)
## Warning: package 'mlogit' was built under R version 4.0.5
## Loading required package: dfidx
## Warning: package 'dfidx' was built under R version 4.0.5
## 
## Attaching package: 'dfidx'
## The following object is masked from 'package:MASS':
## 
##     select
## The following object is masked from 'package:stats':
## 
##     filter
library(dplyr)
library(tidyr)
library(forecast)
## Warning: package 'forecast' was built under R version 4.0.5
## 
## Attaching package: 'forecast'
## The following object is masked from 'package:nlme':
## 
##     getResponse
## The following object is masked from 'package:astsa':
## 
##     gas
library(fpp2)
## Warning: package 'fpp2' was built under R version 4.0.5
## -- Attaching packages ---------------------------------------------- fpp2 2.4 --
## v fma       2.4     v expsmooth 2.3
## Warning: package 'fma' was built under R version 4.0.5
## Warning: package 'expsmooth' was built under R version 4.0.5
## -- Conflicts ------------------------------------------------- fpp2_conflicts --
## x forecast::getResponse() masks nlme::getResponse()
## x car::some()             masks purrr::some()
## 
## Attaching package: 'fpp2'
## The following object is masked from 'package:astsa':
## 
##     oil
library(stats)
library(quantmod)
## Warning: package 'quantmod' was built under R version 4.0.5
## Loading required package: xts
## Warning: package 'xts' was built under R version 4.0.5
## 
## Attaching package: 'xts'
## The following objects are masked from 'package:dplyr':
## 
##     first, last
## Loading required package: TTR
preciopm <- read_excel("E:\\SERIES DE TIEMPO\\TAREA 04\\preciopm.xls")
# View(preciopm)
attach(preciopm)
names(preciopm)
## [1] "Precio"
precio.ts <- ts(preciopm, start = c(1990,1),end = c(2019,4), frequency = 12)
print(precio.ts)
##             Jan        Feb        Mar        Apr        May        Jun
## 1990  14.897350  13.856284  12.298178  10.927095  10.452086   9.817348
## 1991  13.795437  10.845017  11.366329  12.068577  11.991099  11.930451
## 1992  10.079426  10.222971  10.928616  12.263161  13.882490  14.717433
## 1993  11.803837  12.505585  12.812625  12.873810  12.220930  11.106039
## 1994  10.227919   9.954569  10.307307  11.943946  12.818879  14.009499
## 1995  14.282580  14.800758  15.121214  16.031652  16.052267  14.611588
## 1996  14.640357  15.096147  16.682205  17.461726  16.069193  15.561163
## 1997  18.060119  15.709637  14.482912  14.259241  14.834376  13.795084
## 1998   9.713509   8.882054   7.631504   9.058311   9.082049   8.297230
## 1999   7.392438   7.126746   9.856138  12.350982  12.237096  13.074408
## 2000  21.348773  23.547154  22.935065  20.260149  23.193243  24.744170
## 2001  18.309991  18.799571  16.851520  16.360149  18.199624  18.789678
## 2002  14.032789  15.278664  19.405427  21.897267  21.987875  21.507413
## 2003  27.074817  27.012354  23.663690  20.458351  21.904876  23.570076
## 2004  25.316733  25.162286  26.962854  28.014928  30.823501  29.251947
## 2005  30.012074  32.092964  36.346343  38.118350  38.912862  43.204432
## 2006  47.779745  46.563260  49.381610  54.956204  55.260986  53.833091
## 2007  42.745920  47.033095  48.943810  52.898664  54.958534  58.682133
## 2008  78.879230  79.714309  87.177370  93.028973 102.884604 112.291047
## 2009  37.230832  37.848297  41.678599  47.490271  56.016166  63.641365
## 2010  70.866452  69.134714  70.093660  72.292077  66.101763  65.540751
## 2011  84.324640  89.161930  99.432700 106.104005 101.835090 100.828631
## 2012 107.455818 108.451418 109.604263 104.893764 100.233358  90.181843
## 2013  97.982782 103.352938 100.770902  97.755385  97.906861  96.993153
## 2014  88.310808  90.822240  91.395224  93.888630  95.086309  97.011046
## 2015  40.451272  45.986060  46.017331  49.325551  52.039105  52.825725
## 2016  23.102382  23.729330  28.326563  31.335818  36.726361  39.807146
## 2017  44.500081  44.174971  41.932428  43.221180  43.850742  41.151050
## 2018  57.453995  56.156762  57.224584  58.159732  62.899289  64.636865
## 2019  54.056660  57.379810  59.464492  62.077030                      
##             Jul        Aug        Sep        Oct        Nov        Dec
## 1990  13.188972  20.825314  26.238379  25.461774  23.590050  19.221472
## 1991  12.852894  12.724638  13.357160  14.094443  11.643019  10.081917
## 1992  14.694666  14.592165  15.002168  15.047736  13.499847  11.999895
## 1993  11.024373  11.150484  11.278000  11.218994   9.715306   9.101101
## 1994  14.525943  12.763118  12.527938  13.827166  14.100563  13.831668
## 1995  13.256370  13.449261  13.363175  12.991089  13.580205  15.116482
## 1996  15.978825  17.149939  19.308046  20.562573  18.913614  19.316873
## 1997  14.158890  14.821528  14.748565  15.700761  14.316305  11.438379
## 1998   8.804921   8.239905   9.465377   9.128815   7.865962   6.349166
## 1999  15.319650  17.430406  19.077463  18.434955  19.961135  20.140117
## 2000  22.778127  24.355191  25.822586  25.011949  24.065706  17.812948
## 2001  18.433045  19.274814  19.325549  15.571857  13.259511  13.662242
## 2002  22.389223  23.253909  24.514419  22.826465  20.001942  23.282675
## 2003  24.909283  25.174429  22.513946  24.135865  24.170211  24.437509
## 2004  30.770350  32.403355  33.356997  37.293723  30.656835  26.902246
## 2005  44.357927  47.831527  48.880013  45.437368  41.707053  42.989153
## 2006  56.818337  57.866679  49.690903  46.744199  45.794018  47.642082
## 2007  63.212159  62.190669  66.439359  71.018809  78.145548  77.690069
## 2008 118.026634 105.209472  83.841054  58.685407  40.592316  32.916936
## 2009  60.191980  66.404843  64.108802  67.933160  71.534239  68.493029
## 2010  66.923774  68.245485  68.332474  72.942531  75.758392  80.208666
## 2011 102.599593  96.988597  97.634395  99.366005 105.806100 105.126973
## 2012  94.012683  99.512167 100.076628  97.108629  93.682388  94.939944
## 2013  99.672555  99.244140  98.145716  93.873293  88.485898  89.409659
## 2014  93.320166  89.507449  84.128243  72.509358  63.479800  50.181375
## 2015  45.165949  38.419266  36.290362  34.860768  32.508829  26.196096
## 2016  37.971526  37.740903  36.826661  40.668356  38.361623  42.325962
## 2017  43.877714  45.554842  48.162370  48.891135  53.345048  54.055756
## 2018  66.421619  64.265666  68.363482  71.153304  59.825830  51.868669
## 2019
start(precio.ts);end(precio.ts)
## [1] 1990    1
## [1] 2019    4
boxplot(precio.ts ~ cycle(precio.ts))

cycle(precio.ts)
##      Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
## 1990   1   2   3   4   5   6   7   8   9  10  11  12
## 1991   1   2   3   4   5   6   7   8   9  10  11  12
## 1992   1   2   3   4   5   6   7   8   9  10  11  12
## 1993   1   2   3   4   5   6   7   8   9  10  11  12
## 1994   1   2   3   4   5   6   7   8   9  10  11  12
## 1995   1   2   3   4   5   6   7   8   9  10  11  12
## 1996   1   2   3   4   5   6   7   8   9  10  11  12
## 1997   1   2   3   4   5   6   7   8   9  10  11  12
## 1998   1   2   3   4   5   6   7   8   9  10  11  12
## 1999   1   2   3   4   5   6   7   8   9  10  11  12
## 2000   1   2   3   4   5   6   7   8   9  10  11  12
## 2001   1   2   3   4   5   6   7   8   9  10  11  12
## 2002   1   2   3   4   5   6   7   8   9  10  11  12
## 2003   1   2   3   4   5   6   7   8   9  10  11  12
## 2004   1   2   3   4   5   6   7   8   9  10  11  12
## 2005   1   2   3   4   5   6   7   8   9  10  11  12
## 2006   1   2   3   4   5   6   7   8   9  10  11  12
## 2007   1   2   3   4   5   6   7   8   9  10  11  12
## 2008   1   2   3   4   5   6   7   8   9  10  11  12
## 2009   1   2   3   4   5   6   7   8   9  10  11  12
## 2010   1   2   3   4   5   6   7   8   9  10  11  12
## 2011   1   2   3   4   5   6   7   8   9  10  11  12
## 2012   1   2   3   4   5   6   7   8   9  10  11  12
## 2013   1   2   3   4   5   6   7   8   9  10  11  12
## 2014   1   2   3   4   5   6   7   8   9  10  11  12
## 2015   1   2   3   4   5   6   7   8   9  10  11  12
## 2016   1   2   3   4   5   6   7   8   9  10  11  12
## 2017   1   2   3   4   5   6   7   8   9  10  11  12
## 2018   1   2   3   4   5   6   7   8   9  10  11  12
## 2019   1   2   3   4
# Para Graficar la Serie de Tiempo
plot(precio.ts, ylab = "precio", main = "Precio del Petroleo Maya")

# Modelo Aditivo 
modeloaditivo <- decompose(precio.ts)
plot(modeloaditivo)

# Modelo Multiplicativo
modelomultiplicativo <- decompose(precio.ts, type = "mult")
plot(modelomultiplicativo)

# Estimar Tendencia 
tendencia <- modelomultiplicativo$trend
print(tendencia)
##             Jan        Feb        Mar        Apr        May        Jun
## 1990         NA         NA         NA         NA         NA         NA
## 1991  16.696236  16.344704  15.470459  14.460103  13.488671  12.610063
## 1992  12.314088  12.468642  12.614998  12.723260  12.840348  12.997632
## 1993  13.027013  12.730681  12.432104  12.117399  11.800179  11.521707
## 1994  11.208430  11.421522  11.540796  11.701551  11.992943  12.372769
## 1995  14.320139  14.295830  14.359220  14.359185  14.302667  14.334520
## 1996  14.885717  15.153347  15.555245  16.118427  16.656130  17.053372
## 1997  16.788439  16.615591  16.328596  15.936042  15.541912  15.022087
## 1998  11.264342  10.767025  10.272658   9.778694   9.236099   8.755284
## 1999   9.595777  10.250161  11.033602  11.821862  12.713583  13.792172
## 2000  20.843460  21.442762  22.012342  22.567430  23.012495  23.086554
## 2001  20.415375  20.022647  19.540255  18.876208  18.032613  17.409409
## 2002  17.967879  18.298515  18.680513  19.198992  19.782202  20.463988
## 2003  23.434402  23.619426  23.616095  23.587300  23.815537  24.037332
## 2004  26.150335  26.695752  27.448751  28.448789  29.267309  29.640282
## 2005  34.738693  35.947683  37.237316  38.223426  39.023171  40.153884
## 2006  48.767345  49.704660  50.156579  50.244817  50.469558  50.833721
## 2007  51.084607  51.531183  52.409201  54.118496  56.477918  59.077898
## 2008  83.339949  87.416335  89.933856  90.145035  88.066425  84.636160
## 2009  57.855002  53.828365  51.389329  50.952474  52.627044  55.398628
## 2010  68.005114  68.362299  68.614979  68.999689  69.384419  70.048577
## 2011  85.994686  88.678808  91.097351  93.419242  95.772208  98.062459
## 2012 102.004056 101.751417 101.958325 101.966028 101.366816 100.437201
## 2013  98.077033  98.301693  98.210071  97.994810  97.643484  97.196535
## 2014  93.514110  92.843732  91.853975  90.379750  88.447665  85.771233
## 2015  59.641194  55.506094  51.384175  47.822238  44.963090  42.673246
## 2016  32.739305  32.411272  32.405353  32.669681  33.155531  34.071475
## 2017  41.306548  41.878220  42.676122  43.491059  44.457984  45.571035
## 2018  55.140837  56.859784  58.481115  60.250418  61.448041  61.626945
## 2019         NA         NA         NA         NA                      
##             Jul        Aug        Sep        Oct        Nov        Dec
## 1990  16.685279  16.513896  16.349600  16.358334  16.470022  16.622193
## 1991  12.074415  11.893662  11.849506  11.839375  11.926291  12.121223
## 1992  13.149398  13.316358  13.489967  13.593911  13.550123  13.330417
## 1993  11.335260  11.163305  10.952624  10.809492  10.795662  10.941554
## 1994  12.738821  13.109689  13.512193  13.883094  14.188139  14.347951
## 1995  14.402961  14.430176  14.507525  14.632153  14.692445  14.732715
## 1996  17.370878  17.538931  17.472855  17.247781  17.062894  16.937856
## 1997  14.346041  13.713783  13.143825  12.641644  12.185258  11.716501
## 1998   8.446522   8.276673   8.296228   8.526116   8.794771   9.125280
## 1999  14.948308  16.214006  17.443145  18.317649  19.103704  20.046450
## 2000  22.862972  22.538541  22.087244  21.671263  21.300695  20.844524
## 2001  17.058246  16.733325  16.693033  17.030159  17.418716  17.689799
## 2002  21.408257  22.440578  23.106910  23.224383  23.160969  23.243455
## 2003  24.012197  23.861857  23.922236  24.374559  25.061026  25.669380
## 2004  29.938619  30.423036  31.102793  31.914748  32.672780  33.591191
## 2005  41.564492  42.907740  44.053806  45.298519  46.681268  47.805301
## 2006  50.817850  50.627684  50.629019  50.525046  50.426713  50.616154
## 2007  61.835452  64.702724  67.657506  70.922667  74.591683  78.822307
## 2008  81.035263  77.555496  73.915297  70.122069  66.271771  62.291849
## 2009  58.282450  60.987534  63.475096  65.692465  67.146107  67.645481
## 2010  71.097486  72.492711  74.549639  77.180929  80.078648  83.037865
## 2011 100.064521 101.832049 103.059592 103.432981 103.315815 102.805460
## 2012  99.618032  99.010886  98.430392  97.764903  97.370533  97.557400
## 2013  96.563108  95.637996  94.725231  94.173463  93.894825  93.778048
## 2014  82.142573  78.280252  74.521332  70.773792  67.123363  63.488675
## 2015  40.950989  39.300755  37.636276  36.149588  34.761985  33.581513
## 2016  35.635123  37.378596  38.797409  39.859543  40.651616  41.004461
## 2017  46.599523  47.638510  48.774925  50.034538  51.450667  53.222932
## 2018  61.394261  61.303665  61.447955  61.704506         NA         NA
## 2019
# Estimar la Estacionalidad 
estacionalidad <- modelomultiplicativo$seasonal
print(estacionalidad)
##            Jan       Feb       Mar       Apr       May       Jun       Jul
## 1990 0.9230576 0.9264216 0.9568760 1.0005568 1.0322156 1.0402198 1.0421301
## 1991 0.9230576 0.9264216 0.9568760 1.0005568 1.0322156 1.0402198 1.0421301
## 1992 0.9230576 0.9264216 0.9568760 1.0005568 1.0322156 1.0402198 1.0421301
## 1993 0.9230576 0.9264216 0.9568760 1.0005568 1.0322156 1.0402198 1.0421301
## 1994 0.9230576 0.9264216 0.9568760 1.0005568 1.0322156 1.0402198 1.0421301
## 1995 0.9230576 0.9264216 0.9568760 1.0005568 1.0322156 1.0402198 1.0421301
## 1996 0.9230576 0.9264216 0.9568760 1.0005568 1.0322156 1.0402198 1.0421301
## 1997 0.9230576 0.9264216 0.9568760 1.0005568 1.0322156 1.0402198 1.0421301
## 1998 0.9230576 0.9264216 0.9568760 1.0005568 1.0322156 1.0402198 1.0421301
## 1999 0.9230576 0.9264216 0.9568760 1.0005568 1.0322156 1.0402198 1.0421301
## 2000 0.9230576 0.9264216 0.9568760 1.0005568 1.0322156 1.0402198 1.0421301
## 2001 0.9230576 0.9264216 0.9568760 1.0005568 1.0322156 1.0402198 1.0421301
## 2002 0.9230576 0.9264216 0.9568760 1.0005568 1.0322156 1.0402198 1.0421301
## 2003 0.9230576 0.9264216 0.9568760 1.0005568 1.0322156 1.0402198 1.0421301
## 2004 0.9230576 0.9264216 0.9568760 1.0005568 1.0322156 1.0402198 1.0421301
## 2005 0.9230576 0.9264216 0.9568760 1.0005568 1.0322156 1.0402198 1.0421301
## 2006 0.9230576 0.9264216 0.9568760 1.0005568 1.0322156 1.0402198 1.0421301
## 2007 0.9230576 0.9264216 0.9568760 1.0005568 1.0322156 1.0402198 1.0421301
## 2008 0.9230576 0.9264216 0.9568760 1.0005568 1.0322156 1.0402198 1.0421301
## 2009 0.9230576 0.9264216 0.9568760 1.0005568 1.0322156 1.0402198 1.0421301
## 2010 0.9230576 0.9264216 0.9568760 1.0005568 1.0322156 1.0402198 1.0421301
## 2011 0.9230576 0.9264216 0.9568760 1.0005568 1.0322156 1.0402198 1.0421301
## 2012 0.9230576 0.9264216 0.9568760 1.0005568 1.0322156 1.0402198 1.0421301
## 2013 0.9230576 0.9264216 0.9568760 1.0005568 1.0322156 1.0402198 1.0421301
## 2014 0.9230576 0.9264216 0.9568760 1.0005568 1.0322156 1.0402198 1.0421301
## 2015 0.9230576 0.9264216 0.9568760 1.0005568 1.0322156 1.0402198 1.0421301
## 2016 0.9230576 0.9264216 0.9568760 1.0005568 1.0322156 1.0402198 1.0421301
## 2017 0.9230576 0.9264216 0.9568760 1.0005568 1.0322156 1.0402198 1.0421301
## 2018 0.9230576 0.9264216 0.9568760 1.0005568 1.0322156 1.0402198 1.0421301
## 2019 0.9230576 0.9264216 0.9568760 1.0005568                              
##            Aug       Sep       Oct       Nov       Dec
## 1990 1.0577040 1.0672579 1.0489735 0.9801718 0.9244152
## 1991 1.0577040 1.0672579 1.0489735 0.9801718 0.9244152
## 1992 1.0577040 1.0672579 1.0489735 0.9801718 0.9244152
## 1993 1.0577040 1.0672579 1.0489735 0.9801718 0.9244152
## 1994 1.0577040 1.0672579 1.0489735 0.9801718 0.9244152
## 1995 1.0577040 1.0672579 1.0489735 0.9801718 0.9244152
## 1996 1.0577040 1.0672579 1.0489735 0.9801718 0.9244152
## 1997 1.0577040 1.0672579 1.0489735 0.9801718 0.9244152
## 1998 1.0577040 1.0672579 1.0489735 0.9801718 0.9244152
## 1999 1.0577040 1.0672579 1.0489735 0.9801718 0.9244152
## 2000 1.0577040 1.0672579 1.0489735 0.9801718 0.9244152
## 2001 1.0577040 1.0672579 1.0489735 0.9801718 0.9244152
## 2002 1.0577040 1.0672579 1.0489735 0.9801718 0.9244152
## 2003 1.0577040 1.0672579 1.0489735 0.9801718 0.9244152
## 2004 1.0577040 1.0672579 1.0489735 0.9801718 0.9244152
## 2005 1.0577040 1.0672579 1.0489735 0.9801718 0.9244152
## 2006 1.0577040 1.0672579 1.0489735 0.9801718 0.9244152
## 2007 1.0577040 1.0672579 1.0489735 0.9801718 0.9244152
## 2008 1.0577040 1.0672579 1.0489735 0.9801718 0.9244152
## 2009 1.0577040 1.0672579 1.0489735 0.9801718 0.9244152
## 2010 1.0577040 1.0672579 1.0489735 0.9801718 0.9244152
## 2011 1.0577040 1.0672579 1.0489735 0.9801718 0.9244152
## 2012 1.0577040 1.0672579 1.0489735 0.9801718 0.9244152
## 2013 1.0577040 1.0672579 1.0489735 0.9801718 0.9244152
## 2014 1.0577040 1.0672579 1.0489735 0.9801718 0.9244152
## 2015 1.0577040 1.0672579 1.0489735 0.9801718 0.9244152
## 2016 1.0577040 1.0672579 1.0489735 0.9801718 0.9244152
## 2017 1.0577040 1.0672579 1.0489735 0.9801718 0.9244152
## 2018 1.0577040 1.0672579 1.0489735 0.9801718 0.9244152
## 2019
ts.plot(cbind(tendencia,tendencia*estacionalidad), lty = 1:2)