# UNIVERSIDAD NACIONAL DEL ALTIPLANO
# INGENIERIA ESTADISTICA E INFORMATICA
# CURSO: SERIES DE TIEMPO

library(readxl)
## Warning: package 'readxl' was built under R version 4.0.2
library(lubridate)
## Warning: package 'lubridate' was built under R version 4.0.5
## 
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
## 
##     date, intersect, setdiff, union
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.0.5
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.3     v purrr   0.3.4
## v tibble  3.1.5     v dplyr   1.0.7
## v tidyr   1.1.4     v stringr 1.4.0
## v readr   2.0.2     v forcats 0.5.1
## Warning: package 'ggplot2' was built under R version 4.0.3
## Warning: package 'tibble' was built under R version 4.0.5
## Warning: package 'tidyr' was built under R version 4.0.5
## Warning: package 'readr' was built under R version 4.0.5
## Warning: package 'dplyr' was built under R version 4.0.5
## Warning: package 'forcats' was built under R version 4.0.5
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x lubridate::as.difftime() masks base::as.difftime()
## x lubridate::date()        masks base::date()
## x dplyr::filter()          masks stats::filter()
## x lubridate::intersect()   masks base::intersect()
## x dplyr::lag()             masks stats::lag()
## x lubridate::setdiff()     masks base::setdiff()
## x lubridate::union()       masks base::union()
library(car)
## Warning: package 'car' was built under R version 4.0.5
## Loading required package: carData
## 
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
## 
##     recode
## The following object is masked from 'package:purrr':
## 
##     some
library(tseries)
## Warning: package 'tseries' was built under R version 4.0.5
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
library(astsa)
## Warning: package 'astsa' was built under R version 4.0.5
library(foreign)
## Warning: package 'foreign' was built under R version 4.0.3
library(timsac)
## Warning: package 'timsac' was built under R version 4.0.3
library(vars)
## Warning: package 'vars' was built under R version 4.0.5
## Loading required package: MASS
## 
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
## 
##     select
## Loading required package: strucchange
## Warning: package 'strucchange' was built under R version 4.0.5
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## Loading required package: sandwich
## 
## Attaching package: 'strucchange'
## The following object is masked from 'package:stringr':
## 
##     boundary
## Loading required package: urca
## Warning: package 'urca' was built under R version 4.0.5
## Loading required package: lmtest
## Warning: package 'lmtest' was built under R version 4.0.2
library(lmtest)
library(mFilter)
## Warning: package 'mFilter' was built under R version 4.0.5
library(dynlm)
## Warning: package 'dynlm' was built under R version 4.0.5
library(nlme)
## Warning: package 'nlme' was built under R version 4.0.5
## 
## Attaching package: 'nlme'
## The following object is masked from 'package:dplyr':
## 
##     collapse
library(broom)
## Warning: package 'broom' was built under R version 4.0.5
library(kableExtra)
## Warning: package 'kableExtra' was built under R version 4.0.5
## 
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
## 
##     group_rows
library(knitr)
library(MASS)
library(parallel)
library(car)
library(mlogit)
## Warning: package 'mlogit' was built under R version 4.0.5
## Loading required package: dfidx
## Warning: package 'dfidx' was built under R version 4.0.5
## 
## Attaching package: 'dfidx'
## The following object is masked from 'package:MASS':
## 
##     select
## The following object is masked from 'package:stats':
## 
##     filter
library(dplyr)
library(tidyr)
library(forecast)
## Warning: package 'forecast' was built under R version 4.0.5
## 
## Attaching package: 'forecast'
## The following object is masked from 'package:nlme':
## 
##     getResponse
## The following object is masked from 'package:astsa':
## 
##     gas
library(fpp2)
## Warning: package 'fpp2' was built under R version 4.0.5
## -- Attaching packages ---------------------------------------------- fpp2 2.4 --
## v fma       2.4     v expsmooth 2.3
## Warning: package 'fma' was built under R version 4.0.5
## Warning: package 'expsmooth' was built under R version 4.0.5
## -- Conflicts ------------------------------------------------- fpp2_conflicts --
## x forecast::getResponse() masks nlme::getResponse()
## x car::some()             masks purrr::some()
## 
## Attaching package: 'fpp2'
## The following object is masked from 'package:astsa':
## 
##     oil
library(stats)
library(quantmod)
## Warning: package 'quantmod' was built under R version 4.0.5
## Loading required package: xts
## Warning: package 'xts' was built under R version 4.0.5
## 
## Attaching package: 'xts'
## The following objects are masked from 'package:dplyr':
## 
##     first, last
## Loading required package: TTR
#Modelo SARIMA
#Procedimiento General

#Importar los datos de la libreria fpp2
data(euretail)
euretail
##        Qtr1   Qtr2   Qtr3   Qtr4
## 1996  89.13  89.52  89.88  90.12
## 1997  89.19  89.78  90.03  90.38
## 1998  90.27  90.77  91.85  92.51
## 1999  92.21  92.52  93.62  94.15
## 2000  94.69  95.34  96.04  96.30
## 2001  94.83  95.14  95.86  95.83
## 2002  95.73  96.36  96.89  97.01
## 2003  96.66  97.76  97.83  97.76
## 2004  98.17  98.55  99.31  99.44
## 2005  99.43  99.84 100.32 100.40
## 2006  99.88 100.19 100.75 101.01
## 2007 100.84 101.34 101.94 102.10
## 2008 101.56 101.48 101.13 100.34
## 2009  98.93  98.31  97.67  97.44
## 2010  96.53  96.56  96.51  96.70
## 2011  95.88  95.84  95.79  95.94
#Realice la grafica de Serie de Tiempo
plot.ts(euretail, main = "Euretail",type ="l")

adf.test(euretail) #No Estacionaria
## Warning in adf.test(euretail): p-value greater than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  euretail
## Dickey-Fuller = -0.17892, Lag order = 3, p-value = 0.99
## alternative hypothesis: stationary
#Diferencias se requieren para un SARIMA
nsdiffs(euretail)
## [1] 1
acf(euretail)

pacf(euretail)

#Solicitar Modelo de ARIMA
model <- auto.arima(euretail, stepwise = F, approximation = F)

# Resumen del Modelo SARIMA
summary(model)
## Series: euretail 
## ARIMA(0,1,3)(0,1,1)[4] 
## 
## Coefficients:
##          ma1     ma2     ma3     sma1
##       0.2630  0.3694  0.4200  -0.6636
## s.e.  0.1237  0.1255  0.1294   0.1545
## 
## sigma^2 estimated as 0.156:  log likelihood=-28.63
## AIC=67.26   AICc=68.39   BIC=77.65
## 
## Training set error measures:
##                       ME      RMSE       MAE         MPE      MAPE      MASE
## Training set -0.02965298 0.3661147 0.2787802 -0.02795377 0.2885545 0.2267735
##                     ACF1
## Training set 0.006455781
residuals <- resid(model)
plot(residuals, main = "Residuals", col = "Blue")

adf.test(residuals)
## 
##  Augmented Dickey-Fuller Test
## 
## data:  residuals
## Dickey-Fuller = -3.8579, Lag order = 3, p-value = 0.02164
## alternative hypothesis: stationary
#SARIMA(0,1,3),(0,1,1)[4]
#Pronsotico del Modelo
forecast(model, h=10)
##         Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95
## 2012 Q1       95.17620 94.67006 95.68233 94.40214 95.95026
## 2012 Q2       95.23809 94.42273 96.05345 93.99111 96.48507
## 2012 Q3       95.32444 94.16364 96.48523 93.54915 97.09972
## 2012 Q4       95.33633 93.77859 96.89408 92.95397 97.71870
## 2013 Q1       94.56087 92.58895 96.53279 91.54508 97.57666
## 2013 Q2       94.57178 92.23497 96.90859 90.99794 98.14562
## 2013 Q3       94.56911 91.88684 97.25138 90.46694 98.67129
## 2013 Q4       94.58101 91.56075 97.60126 89.96193 99.20009
## 2014 Q1       93.80554 90.40685 97.20423 88.60769 99.00339
## 2014 Q2       93.81646 90.05855 97.57436 88.06923 99.56368
ggseasonplot(euretail,main = "SARIMA")

#Otra forma para hacer ARIMA
modelo2 <- Arima(euretail, order = c(0,1,3), seasonal = list(order=c(0,1,1), period(4)))
summary(modelo2)
## Series: euretail 
## ARIMA(0,1,3)(0,1,1)[4] 
## 
## Coefficients:
##          ma1     ma2     ma3     sma1
##       0.2630  0.3694  0.4200  -0.6636
## s.e.  0.1237  0.1255  0.1294   0.1545
## 
## sigma^2 estimated as 0.156:  log likelihood=-28.63
## AIC=67.26   AICc=68.39   BIC=77.65
## 
## Training set error measures:
##                       ME      RMSE       MAE         MPE      MAPE      MASE
## Training set -0.02965298 0.3661147 0.2787802 -0.02795377 0.2885545 0.2267735
##                     ACF1
## Training set 0.006455781