Model Equation for four factor interaction:

\(Y_{ijkl} = \mu + \alpha_i + \beta_j + \gamma_k+ \delta_l+ \alpha\beta_ij + \alpha\gamma_ik+ \beta\gamma_jk + \alpha\delta_il+ \beta\delta_jl+ \gamma\delta_kl+ \alpha\beta\gamma_ijk + \alpha\beta\delta_ijl + \alpha\gamma\delta_ikl + \beta\gamma\delta_jkl + \alpha\beta\gamma\delta_ijkl + \epsilon_ijkl\)

Where

\(\alpha_i\) is Main Effects of Factor A (pin elevation)

\(\beta_j\) is Main Effects of Factor B (Bungee Position)

\(\gamma_k\) is Main Effects of Factor C (Release Angle)

\(\delta_l\) is Main Effects of Factor D (Ball Type)

\(\alpha\beta_ij\) is Interaction effects of Factors A and Factors B

\(\alpha\gamma_ik\) is Interaction effects of Factors A and Factors C

\(\beta\gamma_jk\) is Interaction effects of Factors B and Factors C

\(\alpha\delta_il\) is Interaction effects of Factors A and Factors D

\(\beta\delta_jl\) is Interaction effects of Factors B and Factors D

\(\gamma\delta_kl\) is Interaction effects of Factors C and Factors D

\(\alpha\beta\gamma_ijk\) is Interaction effects of Factors A, Factors B and Factors C

\(\alpha\beta\delta_ijl\) is Interaction effects of Factors A, Factors B and Factors D

\(\alpha\gamma\delta_ikl\) is Interaction effects of Factors A, Factors C and Factors D

\(\beta\gamma\delta_jkl\) is Interaction effects of Factors B, Factors C and Factors D

\(\alpha\beta\gamma\delta_ijkl\) is Interaction effects of Factors A, Factors B, Factors C and Factors D

\(\epsilon_ijkl\) is error

library(GAD)
## Loading required package: matrixStats
## Loading required package: R.methodsS3
## R.methodsS3 v1.8.1 (2020-08-26 16:20:06 UTC) successfully loaded. See ?R.methodsS3 for help.
library(agricolae)
treat<-c(2,2,2,2)
d<-design.ab(treat,1,design = "crd",seed= 1111644)
design<-d$book
design
##    plots r A B C D
## 1    101 1 1 2 1 1
## 2    102 1 2 2 2 1
## 3    103 1 1 2 2 1
## 4    104 1 1 2 2 2
## 5    105 1 1 2 1 2
## 6    106 1 2 1 1 1
## 7    107 1 2 1 2 2
## 8    108 1 2 2 1 1
## 9    109 1 1 1 1 2
## 10   110 1 1 1 1 1
## 11   111 1 2 2 1 2
## 12   112 1 2 1 1 2
## 13   113 1 1 1 2 1
## 14   114 1 2 2 2 2
## 15   115 1 1 1 2 2
## 16   116 1 2 1 2 1
library(DoE.base)
## Loading required package: grid
## Loading required package: conf.design
## Registered S3 method overwritten by 'DoE.base':
##   method           from       
##   factorize.factor conf.design
## 
## Attaching package: 'DoE.base'
## The following objects are masked from 'package:stats':
## 
##     aov, lm
## The following object is masked from 'package:graphics':
## 
##     plot.design
## The following object is masked from 'package:base':
## 
##     lengths
A<-c(-1,1,-1,-1,-1,1,1,1,-1,-1,1,1,-1,1,-1,1)
B<-c(1,1,1,1,1,-1,-1,1,-1,-1,1,-1,-1,1,-1,-1)
C<-c(-1,1,1,1,-1,-1,1,-1,-1,-1,-1,-1,1,1,1,1)
D<-c(-1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,1,-1)
obs<-c(34,68,48,40,30,42,57,43,33,27,42,37,37,57,38,66)
dat<-data.frame(A,B,C,D,obs)
dat
##     A  B  C  D obs
## 1  -1  1 -1 -1  34
## 2   1  1  1 -1  68
## 3  -1  1  1 -1  48
## 4  -1  1  1  1  40
## 5  -1  1 -1  1  30
## 6   1 -1 -1 -1  42
## 7   1 -1  1  1  57
## 8   1  1 -1 -1  43
## 9  -1 -1 -1  1  33
## 10 -1 -1 -1 -1  27
## 11  1  1 -1  1  42
## 12  1 -1 -1  1  37
## 13 -1 -1  1 -1  37
## 14  1  1  1  1  57
## 15 -1 -1  1  1  38
## 16  1 -1  1 -1  66
model<-lm(obs~A*B*C*D,data = dat)
coef(model)
## (Intercept)           A           B           C           D         A:B 
##     43.6875      7.8125      1.5625      7.6875     -1.9375     -0.5625 
##         A:C         B:C         A:D         B:D         C:D       A:B:C 
##      2.8125      0.3125     -1.3125     -1.0625     -1.4375     -0.8125 
##       A:B:D       A:C:D       B:C:D     A:B:C:D 
##      1.3125     -0.3125     -0.3125     -0.4375
halfnormal(model)
## 
## Significant effects (alpha=0.05, Lenth method):
## [1] A C

model1<-aov(obs~A+C+A*C,data = dat)

summary(model1)
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## A            1  976.6   976.6  51.230 1.15e-05 ***
## C            1  945.6   945.6  49.603 1.35e-05 ***
## A:C          1  126.6   126.6   6.639   0.0242 *  
## Residuals   12  228.7    19.1                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

From the results of halfnormal plot we can conclude that factors A and C seems to be significant.

Model Equation of significant factor

\(Y_{ik} = \mu + \alpha_i + \gamma_k+ \alpha\gamma_ik + \epsilon_ik\)

Where

\(\alpha_i\) is Main Effects of Factor A (pin elevation)

\(\gamma_k\) is Main Effects of Factor C (Release Angle)

\(\alpha\gamma_ik\) is Interaction effects of Factors A and Factors C

\(\epsilon_ijkl\) is error

Testing higher level interaction hypothesis first

Hypothesis to be tested first

Null Hypothesis(H0)= Interaction effect of Factor A and C is significant

Alternate Hypothesis(Ha)= Interaction effect of Factor A, and C is not significant

From the results of the ANOVA table, the p-value of interaction of factor A and Factor C is 0.0242. As p-value is lesser than the alpha 0.05, we conclude that we reject the null hypothesis. Hence we conclude that interaction is significant

As we rejected the null hypothesis for interaction we must stop exploration on the associated factors

According to the ANOVA table, the p-value for factor A is 1.15e-05 and for factor C is 1.35e-05.

ALL CODE

library(GAD)
library(agricolae)
treat<-c(2,2,2,2)
d<-design.ab(treat,1,design = "crd",seed= 1111644)
design<-d$book
design
library(DoE.base)
A<-c(-1,1,-1,-1,-1,1,1,1,-1,-1,1,1,-1,1,-1,1)
B<-c(1,1,1,1,1,-1,-1,1,-1,-1,1,-1,-1,1,-1,-1)
C<-c(-1,1,1,1,-1,-1,1,-1,-1,-1,-1,-1,1,1,1,1)
D<-c(-1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,1,-1)
obs<-c(34,68,48,40,30,42,57,43,33,27,42,37,37,57,38,66)
dat<-data.frame(A,B,C,D,obs)
dat
model<-lm(obs~A*B*C*D,data = dat)
coef(model)
halfnormal(model)

model1<-aov(obs~A+C+A*C,data = dat)

summary(model1)