For \(2^4\) factorial design, we used design.ab to generate one replication of a run order for our \(2^4\) factorial design
## plots r A B C D
## 1 101 1 1 1 2 1
## 2 102 1 1 1 2 2
## 3 103 1 1 2 1 2
## 4 104 1 2 2 2 1
## 5 105 1 2 1 2 1
## 6 106 1 2 2 2 2
## 7 107 1 1 2 2 2
## 8 108 1 1 2 2 1
## 9 109 1 1 2 1 1
## 10 110 1 2 2 1 2
## 11 111 1 2 1 1 2
## 12 112 1 2 1 2 2
## 13 113 1 2 2 1 1
## 14 114 1 1 1 1 2
## 15 115 1 1 1 1 1
## 16 116 1 2 1 1 1
For each of our 4 factors, we had two levels for each factors. They were classified as -1(low) and a +1(high). The different factor levels,and the assigned variables.
| Factor | Low Level(-1) | High Level(+1) | |
|---|---|---|---|
| A | Pin Location | Postion 1 | Postion 3 |
| B | Bungee Position | Position 2 | Position 3 |
| C | Release Angle | 140 degrees | 170 degrees |
| D | Ball Type | Yellow | Red |
Here is our data that we collected from the experiment.
## Pin_Elevation Bungee_Position Release_Angle Ball_Type response
## 1 -1 -1 1 -1 36
## 2 -1 -1 1 1 35
## 3 -1 1 -1 1 34
## 4 1 1 1 -1 60
## 5 1 -1 1 -1 68
## 6 1 1 1 1 60
## 7 -1 1 1 1 37
## 8 -1 1 1 -1 38
## 9 -1 1 -1 -1 33
## 10 1 1 -1 1 41
## 11 1 -1 -1 1 42
## 12 1 -1 1 1 52
## 13 1 1 -1 -1 51
## 14 -1 -1 -1 1 34
## 15 -1 -1 -1 -1 26
## 16 1 -1 -1 -1 47
Here are the Hypothesis tests that we used in the experiment. We started at the highest order hypothesis test, which was \(\alpha_i\)*\(\beta_j\) hypothesis test.
Ho: \(\alpha_{i} = 0\) - Null Hypothesis
Ha: \(\alpha_{i} \ne 0\) - Alternative Hypothesis
Ho: \(\beta_{j} = 0\) - Null Hypothesis
Ha: \(\beta_{j} \ne 0\) - Alternative Hypothesis
Ho: \(\alpha \beta_{ij} = 0\) - Null Hypothesis
Ha: \(\alpha \beta_{ij} \ne 0\) - Alternative Hypothesis
##
## Significant effects (alpha=0.05, Lenth method):
## [1] Pin_Elevation Release_Angle
From the plot, factors Pin Elevation and Release Angle are significant model terms.
\(y_{i} = \beta_{0} + \beta_{1}x_{i1} + \beta_{2}x_{i2} +\epsilon_{i}\)
\(Distance = {43.37} - 9.25x_{i1} + 4.875x_{i2}\)
After running the half normal plot , we run the ANOVA model with those factors and generated the following table.
## Df Sum Sq Mean Sq F value Pr(>F)
## Pin_Elevation 1 1369.0 1369.0 51.96 6.86e-06 ***
## Release_Angle 1 380.2 380.2 14.43 0.00221 **
## Residuals 13 342.5 26.3
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Intercept) Pin_Elevation1 Release_Angle1
## 29.25 18.50 9.75
From the result, values of “Prob > F” less than 0.0500 indicate model terms are significant. In this case Pin_Elevation and Release_Angle are significant model terms.
\(y_{i} = \beta_{0} + \beta_{1}x_{i1} + \beta_{2}x_{i2} +\epsilon_{i}\)
\(Distance = {29.25} - 18.50x_{i1} + 9.75x_{i2}\)
library(agricolae)
#?design.ab
trts<-c(2,2,2,2)
design<-design.ab(trt=trts, r=1, design="crd",seed=878900)
design$book
library(knitr)
A <- c("Pin Location","Postion 1","Postion 3")
B <-c("Bungee Position" ,"Position 2", "Position 3")
C<-c("Release Angle", "140 degrees", "170 degrees")
D<-c("Ball Type", "Yellow", "Red")
F_levels <- rbind(A,B,C,D)
colnames(F_levels)<- c("Factor","Low Level(-1)","High Level(+1)")
kable(F_levels,caption = "Factors and Low and High Levels")
library(DoE.base)
Pin_Elevation<-c(-1,-1,-1,1,1,1,-1,-1,-1,1,1,1,1,-1,-1,1)
Bungee_Position<-c(-1,-1,1,1,-1,1,1,1,1,1,-1,-1,1,-1,-1,-1)
Release_Angle<-c(1,1,-1,1,1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1)
Ball_Type<-c(-1,1,1,-1,-1,1,1,-1,-1,1,1,1,-1,1,-1,-1)
response<-c(36,35,34,60,68,60,37,38,33,41,42,52,51,34,26,47)
dat<-data.frame(Pin_Elevation,Bungee_Position,Release_Angle,Ball_Type,response)
dat
model<-lm(response~Pin_Elevation*Bungee_Position*Release_Angle*Ball_Type, data = dat)
#summary(model)
coef(model)
halfnormal(model)
Pin_Elevation<-as.factor(Pin_Elevation)
Bungee_Position<-as.factor(Bungee_Position)
Release_Angle<-as.factor(Release_Angle)
Ball_Type<-as.factor(Ball_Type)
model1<-aov(response~Pin_Elevation+Release_Angle)
summary(model1)
coef(model1)