#load the library and import the data set
library(readxl)
gnp = read_excel("C:\\Users\\user\\Downloads\\GNP.xlsx")
gnp
## # A tibble: 12 x 5
## country birth_rate GNP_p.c. growth income_ratio
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 Brazil 30 2200 5.1 9.5
## 2 Colombia 29 1380 3.2 6.8
## 3 Costa Rica 30 1430 3 4.6
## 4 India 35 260 1.4 3.1
## 5 Mexico 36 2250 3.8 5
## 6 Peru 36 1170 1 8.7
## 7 Philippines 34 790 2.8 3.8
## 8 Senegal 48 430 -0.3 6.4
## 9 South Korea 24 1700 6.9 2.7
## 10 Sri Lanka 27 300 2.5 2.3
## 11 Taiwan 21 1170 6.2 3.8
## 12 Thailand 30 770 4.6 3.3
#———– Problem A ———– #
## Determine the relationship between birth rate and growth.
## Find the value of R. Interpret the result.
scatter.smooth(x=gnp$growth,
y=gnp$birth_rate,
main="Scatter Plot")
cor(gnp$birth_rate, gnp$growth)
## [1] -0.8235457
# Based on the value of r which is -0.8235457, the birth rate and growth rate has a
# strong negative relationship. This means that as the growth rate increases
# the birth rate decreases.
#———– Problem B ———– #
## State the simple linear regression equation for
## the income ratio (IR), for GNP and for growth.
# For income ratio:
linearMod_income_ratio <-lm(birth_rate~income_ratio, data=gnp)
linearMod_income_ratio
##
## Call:
## lm(formula = birth_rate ~ income_ratio, data = gnp)
##
## Coefficients:
## (Intercept) income_ratio
## 26.443 1.045
# The simple linear regression equation for
# the income ratio (IR) is Y(hat) = 26.44 + 1.05X
# or birth_rate = 26.44 + 1.05 * income_ratio
# For GNP:
linearMod_gnp <-lm(birth_rate~GNP_p.c., data=gnp)
linearMod_gnp
##
## Call:
## lm(formula = birth_rate ~ GNP_p.c., data = gnp)
##
## Coefficients:
## (Intercept) GNP_p.c.
## 34.720760 -0.002646
# The simple linear regression equation for
# the GNP is Y(hat) = 34.72 + (-0.00)X
# or birth_rate = 34.72+ (-0.00) * GNP
# For growth:
linearMod_growth <-lm(birth_rate~growth, data=gnp)
linearMod_growth
##
## Call:
## lm(formula = birth_rate ~ growth, data = gnp)
##
## Coefficients:
## (Intercept) growth
## 40.71 -2.70
# The simple linear regression equation for
# the growth is Y(hat) = 40.71 + X(-2.70)
# or birth_rate = 40.71 + (-2.70) * growth
#———– Problem C ———– #
## Find the value of beta sub 0 and beta sub 1 for the regression of the birth rate on the growth.
linearMod<-lm(birth_rate~growth, data=gnp)
linearMod
##
## Call:
## lm(formula = birth_rate ~ growth, data = gnp)
##
## Coefficients:
## (Intercept) growth
## 40.71 -2.70
summary(linearMod)
##
## Call:
## lm(formula = birth_rate ~ growth, data = gnp)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.9617 -2.7017 -0.5417 2.2034 6.4783
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 40.7117 2.3031 17.677 7.15e-09 ***
## growth -2.7000 0.5881 -4.591 0.000994 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.132 on 10 degrees of freedom
## Multiple R-squared: 0.6782, Adjusted R-squared: 0.6461
## F-statistic: 21.08 on 1 and 10 DF, p-value: 0.0009936
# The beta sub 0 is 40.71
# The beta sub 1 is -2.70
#———– Problem D ———– #
## Interpret the slope and intercept for the regression of
##the birth rate on the growth.
# The slope is -2.70 and the intercept in 40.71 for the regression
# of the birth rate on the growth rate. This goes to show that
#as birth rate decreases by 5, the growth rate increases by 1.
#———– Problem E ———– #
## Calculate the R^2 value for the regression of the birth rate on the growth. Interpret the result.
summary(linearMod)
##
## Call:
## lm(formula = birth_rate ~ growth, data = gnp)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.9617 -2.7017 -0.5417 2.2034 6.4783
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 40.7117 2.3031 17.677 7.15e-09 ***
## growth -2.7000 0.5881 -4.591 0.000994 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.132 on 10 degrees of freedom
## Multiple R-squared: 0.6782, Adjusted R-squared: 0.6461
## F-statistic: 21.08 on 1 and 10 DF, p-value: 0.0009936
# The r^2 is 0.6782. This means that the variation in birth rate
# is reduced by 67.82 percent when growth rate is considered.