Se toma una prueba realizada sobre diferencia de medias frente al peso de niños nacidos por madres fumadoras y niños nacidos por madres no fumadoras
\(H_0: \mu(nf)−\mu(f)=0\)
\(H_a:\mu(nf)−\mu(f)≠0\)
smoker <- births %>% filter(smoke == "smoker") %>% pull(weight)
nonsmoker <- births %>% filter(smoke == "nonsmoker") %>% pull(weight)
mean(nonsmoker) - mean(smoker)
## [1] 0.4005
ggplot(births,aes(x = weight)) +
geom_histogram(aes(y = ..density.., colour = smoke)) +
facet_grid(.~ smoke) +
theme_bw() + theme(legend.position = "none")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
par(mar = c(2, 2, 2, 2))
par(mfrow = c(1, 2))
qqnorm(nonsmoker, xlab = "", ylab = "",
main = "nonsmoker", col = "firebrick")
qqline(nonsmoker)
qqnorm(smoker, xlab = "", ylab = "",
main = "smoker", col = "springgreen4")
qqline(smoker)
shapiro.test(smoker)
##
## Shapiro-Wilk normality test
##
## data: smoker
## W = 0.89491, p-value = 0.0003276
shapiro.test(nonsmoker)
##
## Shapiro-Wilk normality test
##
## data: nonsmoker
## W = 0.92374, p-value = 2.234e-05
ggplot(data = births) +
geom_boxplot(aes(x = smoke, y = weight, colour = smoke)) +
theme_bw() + theme(legend.position = "none")
require(car)
## Loading required package: car
## Warning: package 'car' was built under R version 4.1.2
## Loading required package: carData
##
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
##
## recode
## The following object is masked from 'package:purrr':
##
## some
## The following object is masked from 'package:openintro':
##
## densityPlot
fligner.test(weight ~ smoke, data = births)
##
## Fligner-Killeen test of homogeneity of variances
##
## data: weight by smoke
## Fligner-Killeen:med chi-squared = 0.56858, df = 1, p-value = 0.4508
leveneTest(weight ~ smoke, data = births, center = "median")
## Levene's Test for Homogeneity of Variance (center = "median")
## Df F value Pr(>F)
## group 1 0.4442 0.5062
## 148
\(\alpha = 0.05\)
prueba_t = t.test(
x = smoker,
y = nonsmoker,
alternative = "two.sided",
mu = 0,
var.equal = TRUE,
conf.level = 0.95
)
p_valor=prueba_t$p.value
p_valor
## [1] 0.1228756
ifelse(p_valor>0.05, "No se rechaza la H_O", "Se rechaza la H_O")
## [1] "No se rechaza la H_O"
datos <- data.frame(
corredor = c(1:10),
antes = c(12.9, 13.5, 12.8, 15.6, 17.2, 19.2, 12.6, 15.3, 14.4, 11.3),
despues = c(12.7, 13.6, 12.0, 15.2, 16.8, 20.0, 12.0, 15.9, 16.0, 11.1)
)
head(datos, 4)
## corredor antes despues
## 1 1 12.9 12.7
## 2 2 13.5 13.6
## 3 3 12.8 12.0
## 4 4 15.6 15.2
diferencia <- datos$antes - datos$despues
datos <- cbind(datos, diferencia)
head(datos,4)
## corredor antes despues diferencia
## 1 1 12.9 12.7 0.2
## 2 2 13.5 13.6 -0.1
## 3 3 12.8 12.0 0.8
## 4 4 15.6 15.2 0.4
colMeans(datos[,-1])
## antes despues diferencia
## 14.48 14.53 -0.05
\(H_0: \mu(nf)−\mu(f)=0\)
\(H_a:\mu(nf)−\mu(f)≠0\)
\(\alpha = 0.05\)
par(mar = c(2, 2, 2, 2))
par(mfrow = c(1, 2))
qqnorm(datos$antes, xlab = "", ylab = "", main = "antes")
qqline(datos$antes)
qqnorm(datos$despues, xlab = "", ylab = "", main = "despues")
qqline(datos$despues)
shapiro.test(datos$antes)
##
## Shapiro-Wilk normality test
##
## data: datos$antes
## W = 0.94444, p-value = 0.6033
shapiro.test(datos$despues)
##
## Shapiro-Wilk normality test
##
## data: datos$despues
## W = 0.93638, p-value = 0.5135
\(\bar{d} = -0.05\)
\(\hat{s}_{diferencial}\)
\(SE = \frac{\hat{s}_{diferencial}}{\sqrt{n}}\)
\(Tcal =\frac{\bar{d}}{SE}\)
$p-valor= P(t_{df}=9 < Tcal) + P(t_{df}=9>| Tcal $
pt(q = -0.2133085, df = 9) + (1 - pt(q = 0.2133085, df = 9))
## [1] 0.83584
\(d = \tfrac{\left | \bar{d} \right |}{\hat{s}_{diferencia}}\)
\(d = \tfrac{\left | -0.05 \right |}{0.7412} = 0.068\)
#El p-value al ser menor que α, no hay evidencias significativas para rechazar H0 en favor de HA. No se pude considerar que el rendimiento de los atletas haya cambiado.