library(MASS)
library(randomForest)
## Warning: package 'randomForest' was built under R version 4.0.5
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
library(e1071)
## Warning: package 'e1071' was built under R version 4.0.3
library(ISLR)
## Warning: package 'ISLR' was built under R version 4.0.5
set.seed(421)
x1 = runif(500) - 0.5
x2 = runif(500) - 0.5
y = 1 * (x1^2 - x2^2 > 0)
plot(x1[y == 0], x2[y == 0], col = "red", xlab = "x1", ylab = "x2", pch = "+")
points(x1[y == 1], x2[y == 1], col = "blue", pch = 4)
Non-linear
lm.gfit = glm(y ~ x1 + x2, family = binomial)
summary(lm.gfit)
##
## Call:
## glm(formula = y ~ x1 + x2, family = binomial)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.278 -1.227 1.089 1.135 1.175
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.11999 0.08971 1.338 0.181
## x1 -0.16881 0.30854 -0.547 0.584
## x2 -0.08198 0.31476 -0.260 0.795
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 691.35 on 499 degrees of freedom
## Residual deviance: 690.99 on 497 degrees of freedom
## AIC: 696.99
##
## Number of Fisher Scoring iterations: 3
data = data.frame(x1 = x1, x2 = x2, y = y)
lm.prob = predict(lm.gfit, data, type = "response")
lm.pred = ifelse(lm.prob > 0.52, 1, 0)
data.pos = data[lm.pred == 1, ]
data.neg = data[lm.pred == 0, ]
plot(data.pos$x1, data.pos$x2, col = "blue", xlab = "x1", ylab = "x2", pch = "+")
points(data.neg$x1, data.neg$x2, col = "red", pch = 4)
lm.gfit = glm(y ~ poly(x1, 2) + poly(x2, 2) + I(x1 * x2), data = data, family = binomial)
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
lm.prob = predict(lm.gfit, data, type = "response")
lm.pred = ifelse(lm.prob > 0.5, 1, 0)
data.pos = data[lm.pred == 1, ]
data.neg = data[lm.pred == 0, ]
plot(data.pos$x1, data.pos$x2, col = "blue", xlab = "x1", ylab = "x2", pch = "+")
points(data.neg$x1, data.neg$x2, col = "red", pch = 4)
This non-linear
svm.fit = svm(as.factor(y) ~ x1 + x2, data, kernel = "linear", cost = 0.1)
svm.pred = predict(svm.fit, data)
data.pos = data[svm.pred == 1, ]
data.neg = data[svm.pred == 0, ]
plot(data.pos$x1, data.pos$x2, col = "blue", xlab = "x1", ylab = "x2", pch = "+")
points(data.neg$x1, data.neg$x2, col = "red", pch = 4)
A linear kernel
svm.fit = svm(as.factor(y) ~ x1 + x2, data, gamma = 1)
svm.pred = predict(svm.fit, data)
data.pos = data[svm.pred == 1, ]
data.neg = data[svm.pred == 0, ]
plot(data.pos$x1, data.pos$x2, col = "blue", xlab = "x1", ylab = "x2", pch = "+")
points(data.neg$x1, data.neg$x2, col = "red", pch = 4)
This closely similar to the true class decision boundry ### I)
SVM with non-linear kernel are good at finding non-linear boundaries
gas.med = median(Auto$mpg)
new.var = ifelse(Auto$mpg > gas.med, 1, 0)
Auto$mpglevel = as.factor(new.var)
set.seed(3255)
tune.out = tune(svm, mpglevel~., data = Auto, kernel = "linear", ranges = list(cost = c(0.01, 0.1, 1, 5, 10, 100)))
summary(tune.out)
##
## Parameter tuning of 'svm':
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
## cost
## 1
##
## - best performance: 0.01269231
##
## - Detailed performance results:
## cost error dispersion
## 1 1e-02 0.07397436 0.06863413
## 2 1e-01 0.05102564 0.06923024
## 3 1e+00 0.01269231 0.02154160
## 4 5e+00 0.01519231 0.01760469
## 5 1e+01 0.02025641 0.02303772
## 6 1e+02 0.03294872 0.02898463
set.seed(21)
tune.out = tune(svm, mpglevel ~ ., data = Auto, kernel = "polynomial", ranges = list(cost = c(0.1, 1, 5, 10), degree = c(2, 3, 4)))
summary(tune.out)
##
## Parameter tuning of 'svm':
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
## cost degree
## 10 2
##
## - best performance: 0.5435897
##
## - Detailed performance results:
## cost degree error dispersion
## 1 0.1 2 0.5587821 0.04538579
## 2 1.0 2 0.5587821 0.04538579
## 3 5.0 2 0.5587821 0.04538579
## 4 10.0 2 0.5435897 0.05611162
## 5 0.1 3 0.5587821 0.04538579
## 6 1.0 3 0.5587821 0.04538579
## 7 5.0 3 0.5587821 0.04538579
## 8 10.0 3 0.5587821 0.04538579
## 9 0.1 4 0.5587821 0.04538579
## 10 1.0 4 0.5587821 0.04538579
## 11 5.0 4 0.5587821 0.04538579
## 12 10.0 4 0.5587821 0.04538579
set.seed(463)
tune.out = tune(svm, mpglevel ~ ., data = Auto, kernel = "radial", ranges = list(cost = c(0.1, 1, 5, 10), gamma = c(0.01, 0.1, 1, 5, 10, 100)))
summary(tune.out)
##
## Parameter tuning of 'svm':
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
## cost gamma
## 10 0.01
##
## - best performance: 0.02551282
##
## - Detailed performance results:
## cost gamma error dispersion
## 1 0.1 1e-02 0.09429487 0.04814900
## 2 1.0 1e-02 0.07897436 0.03875105
## 3 5.0 1e-02 0.05352564 0.02532795
## 4 10.0 1e-02 0.02551282 0.02417610
## 5 0.1 1e-01 0.07891026 0.03847631
## 6 1.0 1e-01 0.05602564 0.02881876
## 7 5.0 1e-01 0.03826923 0.03252085
## 8 10.0 1e-01 0.03320513 0.02964746
## 9 0.1 1e+00 0.57660256 0.05479863
## 10 1.0 1e+00 0.06628205 0.02996211
## 11 5.0 1e+00 0.06115385 0.02733573
## 12 10.0 1e+00 0.06115385 0.02733573
## 13 0.1 5e+00 0.57660256 0.05479863
## 14 1.0 5e+00 0.51538462 0.06642516
## 15 5.0 5e+00 0.50775641 0.07152757
## 16 10.0 5e+00 0.50775641 0.07152757
## 17 0.1 1e+01 0.57660256 0.05479863
## 18 1.0 1e+01 0.53833333 0.05640443
## 19 5.0 1e+01 0.53070513 0.05708644
## 20 10.0 1e+01 0.53070513 0.05708644
## 21 0.1 1e+02 0.57660256 0.05479863
## 22 1.0 1e+02 0.57660256 0.05479863
## 23 5.0 1e+02 0.57660256 0.05479863
## 24 10.0 1e+02 0.57660256 0.05479863
svm.linear = svm(mpglevel ~., data = Auto, kernel = "linear", cost = 1)
svm.poly = svm(mpglevel ~ ., data = Auto, kernel = "polynomial", cost = 10, degree = 2)
svm.radial = svm(mpglevel ~ ., data = Auto, kernel = "radial", cost = 10, gamma = 0.01)
plotpairs = function(fit) {
for (name in names(Auto)[!(names(Auto) %in% c("mpg", "mpglevel", "name"))]) {plot(fit, Auto, as.formula(paste("mpg~", name, sep = "")))}
}
plotpairs(svm.linear)
plotpairs(svm.poly)
plotpairs(svm.radial)
set.seed(9004)
train = sample(dim(OJ)[1], 800)
OJ.train = OJ[train, ]
OJ.test = OJ[-train, ]
svm.linear = svm(Purchase ~ ., kernel = "linear", data = OJ.train, cost = 0.1)
summary(svm.linear)
##
## Call:
## svm(formula = Purchase ~ ., data = OJ.train, kernel = "linear", cost = 0.1)
##
##
## Parameters:
## SVM-Type: C-classification
## SVM-Kernel: linear
## cost: 0.1
##
## Number of Support Vectors: 351
##
## ( 177 174 )
##
##
## Number of Classes: 2
##
## Levels:
## CH MM
432 Support Vectors, 177 in CH and 174 in MM
train.pred = predict(svm.linear, OJ.train)
table(OJ.train$Purchase, train.pred)
## train.pred
## CH MM
## CH 424 59
## MM 72 245
Overall correctness in training is 0.16375
test.pred = predict(svm.linear, OJ.test)
table(OJ.test$Purchase, test.pred)
## test.pred
## CH MM
## CH 145 25
## MM 21 79
Overall correctness in test data is 0.1703704
tune.out = tune(svm, Purchase ~ ., data = OJ.train, kernel = "linear", ranges = list(cost = 10^seq(-2, 1, by = 0.25)))
summary(tune.out)
##
## Parameter tuning of 'svm':
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
## cost
## 10
##
## - best performance: 0.17
##
## - Detailed performance results:
## cost error dispersion
## 1 0.01000000 0.17375 0.04875178
## 2 0.01778279 0.17125 0.04788949
## 3 0.03162278 0.17375 0.04875178
## 4 0.05623413 0.17500 0.04526159
## 5 0.10000000 0.17250 0.04401704
## 6 0.17782794 0.17500 0.04787136
## 7 0.31622777 0.17375 0.04581439
## 8 0.56234133 0.17500 0.04787136
## 9 1.00000000 0.17750 0.04851976
## 10 1.77827941 0.17750 0.04556741
## 11 3.16227766 0.17375 0.04267529
## 12 5.62341325 0.17375 0.04016027
## 13 10.00000000 0.17000 0.04090979
Tuning shows that optimal cost is 1
svm.linear = svm(Purchase ~ ., kernel = "linear", data = OJ.train, cost = tune.out$best.parameters$cost)
train.pred = predict(svm.linear, OJ.train)
table(OJ.train$Purchase, train.pred)
## train.pred
## CH MM
## CH 427 56
## MM 69 248
The training error decreases to 0.16375
set.seed(410)
svm.radial = svm(Purchase ~ ., data = OJ.train, kernel = "radial")
summary(svm.radial)
##
## Call:
## svm(formula = Purchase ~ ., data = OJ.train, kernel = "radial")
##
##
## Parameters:
## SVM-Type: C-classification
## SVM-Kernel: radial
## cost: 1
##
## Number of Support Vectors: 371
##
## ( 188 183 )
##
##
## Number of Classes: 2
##
## Levels:
## CH MM
train.pred = predict(svm.radial, OJ.train)
table(OJ.train$Purchase, train.pred)
## train.pred
## CH MM
## CH 441 42
## MM 74 243
test.pred = predict(svm.radial, OJ.test)
table(OJ.test$Purchase, test.pred)
## test.pred
## CH MM
## CH 148 22
## MM 27 73
SVM with radial basis kernels with gamma is 371 with 188 in CH and 183 in MM
set.seed(755)
tune.out = tune(svm, Purchase ~ ., data = OJ.train, kernel = "radial", ranges = list(cost = 10^seq(-2,
1, by = 0.25)))
summary(tune.out)
##
## Parameter tuning of 'svm':
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
## cost
## 0.3162278
##
## - best performance: 0.1675
##
## - Detailed performance results:
## cost error dispersion
## 1 0.01000000 0.39625 0.06615691
## 2 0.01778279 0.39625 0.06615691
## 3 0.03162278 0.35375 0.09754807
## 4 0.05623413 0.20000 0.04249183
## 5 0.10000000 0.17750 0.04073969
## 6 0.17782794 0.17125 0.03120831
## 7 0.31622777 0.16750 0.04216370
## 8 0.56234133 0.16750 0.03782269
## 9 1.00000000 0.17250 0.03670453
## 10 1.77827941 0.17750 0.03374743
## 11 3.16227766 0.18000 0.04005205
## 12 5.62341325 0.18000 0.03446012
## 13 10.00000000 0.18625 0.04427267
svm.radial = svm(Purchase ~ ., data = OJ.train, kernel = "radial", cost = tune.out$best.parameters$cost)
train.pred = predict(svm.radial, OJ.train)
table(OJ.train$Purchase, train.pred)
## train.pred
## CH MM
## CH 440 43
## MM 81 236
909
test.pred = predict(svm.radial, OJ.test)
table(OJ.test$Purchase, test.pred)
## test.pred
## CH MM
## CH 145 25
## MM 28 72
0.1851852 Tuning slightly decreases training error to
set.seed(8112)
svm.poly = svm(Purchase ~ ., data = OJ.train, kernel = "poly", degree = 2)
summary(svm.poly)
##
## Call:
## svm(formula = Purchase ~ ., data = OJ.train, kernel = "poly", degree = 2)
##
##
## Parameters:
## SVM-Type: C-classification
## SVM-Kernel: polynomial
## cost: 1
## degree: 2
## coef.0: 0
##
## Number of Support Vectors: 456
##
## ( 232 224 )
##
##
## Number of Classes: 2
##
## Levels:
## CH MM
456 Vectors with 232 in CH and 224 in MM
train.pred = predict(svm.poly, OJ.train)
table(OJ.train$Purchase, train.pred)
## train.pred
## CH MM
## CH 450 33
## MM 111 206
test.pred = predict(svm.poly, OJ.test)
table(OJ.test$Purchase, test.pred)
## test.pred
## CH MM
## CH 149 21
## MM 34 66
set.seed(322)
tune.out = tune(svm, Purchase ~ ., data = OJ.train, kernel = "poly", degree = 2,
ranges = list(cost = 10^seq(-2, 1, by = 0.25)))
summary(tune.out)
##
## Parameter tuning of 'svm':
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
## cost
## 10
##
## - best performance: 0.18
##
## - Detailed performance results:
## cost error dispersion
## 1 0.01000000 0.39250 0.05749396
## 2 0.01778279 0.37500 0.05863020
## 3 0.03162278 0.36375 0.05756940
## 4 0.05623413 0.33875 0.06626179
## 5 0.10000000 0.30375 0.05172376
## 6 0.17782794 0.24000 0.04440971
## 7 0.31622777 0.21000 0.04362084
## 8 0.56234133 0.20250 0.03987829
## 9 1.00000000 0.20375 0.03634805
## 10 1.77827941 0.19500 0.04866267
## 11 3.16227766 0.18750 0.04409586
## 12 5.62341325 0.18875 0.04185375
## 13 10.00000000 0.18000 0.03593976
test.pred = predict(svm.poly, OJ.test)
table(OJ.test$Purchase, test.pred)
## test.pred
## CH MM
## CH 149 21
## MM 34 66
0.2037037