alumni <- read.csv("https://bgreenwell.github.io/uc-bana7052/data/alumni.csv")
head(alumni,10)
## ï..school percent_of_classes_under_20
## 1 Boston College 39
## 2 Brandeis University 68
## 3 Brown University 60
## 4 California Institute of Technology 65
## 5 Carnegie Mellon University 67
## 6 Case Western Reserve Univ. 52
## 7 College of William and Mary 45
## 8 Columbia University 69
## 9 Cornell University 72
## 10 Dartmouth College 61
## student_faculty_ratio alumni_giving_rate private
## 1 13 25 1
## 2 8 33 1
## 3 8 40 1
## 4 3 46 1
## 5 10 28 1
## 6 8 31 1
## 7 12 27 1
## 8 7 31 1
## 9 13 35 1
## 10 10 53 1
#Let’s take a glimpse of the dataset
str(alumni)
## 'data.frame': 48 obs. of 5 variables:
## $ ï..school : chr "Boston College" "Brandeis University " "Brown University" "California Institute of Technology" ...
## $ percent_of_classes_under_20: int 39 68 60 65 67 52 45 69 72 61 ...
## $ student_faculty_ratio : int 13 8 8 3 10 8 12 7 13 10 ...
## $ alumni_giving_rate : int 25 33 40 46 28 31 27 31 35 53 ...
## $ private : int 1 1 1 1 1 1 1 1 1 1 ...
summary(alumni)
## ï..school percent_of_classes_under_20 student_faculty_ratio
## Length:48 Min. :29.00 Min. : 3.00
## Class :character 1st Qu.:44.75 1st Qu.: 8.00
## Mode :character Median :59.50 Median :10.50
## Mean :55.73 Mean :11.54
## 3rd Qu.:66.25 3rd Qu.:13.50
## Max. :77.00 Max. :23.00
## alumni_giving_rate private
## Min. : 7.00 Min. :0.0000
## 1st Qu.:18.75 1st Qu.:0.0000
## Median :29.00 Median :1.0000
## Mean :29.27 Mean :0.6875
## 3rd Qu.:38.50 3rd Qu.:1.0000
## Max. :67.00 Max. :1.0000
boxplot(alumni$alumni_giving_rate,xlab='alumni_giving_rate',ylab='values')
Let’s confirm the visual inferences with code
summary(alumni$alumni_giving_rate)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 7.00 18.75 29.00 29.27 38.50 67.00