First, we need to load the dataset for analysis.

alumni <- read.csv("https://bgreenwell.github.io/uc-bana7052/data/alumni.csv")
head(alumni,10) 
##                             ï..school percent_of_classes_under_20
## 1                      Boston College                          39
## 2                Brandeis University                           68
## 3                    Brown University                          60
## 4  California Institute of Technology                          65
## 5          Carnegie Mellon University                          67
## 6          Case Western Reserve Univ.                          52
## 7         College of William and Mary                          45
## 8                 Columbia University                          69
## 9                  Cornell University                          72
## 10                  Dartmouth College                          61
##    student_faculty_ratio alumni_giving_rate private
## 1                     13                 25       1
## 2                      8                 33       1
## 3                      8                 40       1
## 4                      3                 46       1
## 5                     10                 28       1
## 6                      8                 31       1
## 7                     12                 27       1
## 8                      7                 31       1
## 9                     13                 35       1
## 10                    10                 53       1

#Let’s take a glimpse of the dataset

str(alumni)
## 'data.frame':    48 obs. of  5 variables:
##  $ ï..school                  : chr  "Boston College" "Brandeis University " "Brown University" "California Institute of Technology" ...
##  $ percent_of_classes_under_20: int  39 68 60 65 67 52 45 69 72 61 ...
##  $ student_faculty_ratio      : int  13 8 8 3 10 8 12 7 13 10 ...
##  $ alumni_giving_rate         : int  25 33 40 46 28 31 27 31 35 53 ...
##  $ private                    : int  1 1 1 1 1 1 1 1 1 1 ...
summary(alumni)
##   ï..school         percent_of_classes_under_20 student_faculty_ratio
##  Length:48          Min.   :29.00               Min.   : 3.00        
##  Class :character   1st Qu.:44.75               1st Qu.: 8.00        
##  Mode  :character   Median :59.50               Median :10.50        
##                     Mean   :55.73               Mean   :11.54        
##                     3rd Qu.:66.25               3rd Qu.:13.50        
##                     Max.   :77.00               Max.   :23.00        
##  alumni_giving_rate    private      
##  Min.   : 7.00      Min.   :0.0000  
##  1st Qu.:18.75      1st Qu.:0.0000  
##  Median :29.00      Median :1.0000  
##  Mean   :29.27      Mean   :0.6875  
##  3rd Qu.:38.50      3rd Qu.:1.0000  
##  Max.   :67.00      Max.   :1.0000
boxplot(alumni$alumni_giving_rate,xlab='alumni_giving_rate',ylab='values')

Let’s confirm the visual inferences with code

summary(alumni$alumni_giving_rate)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    7.00   18.75   29.00   29.27   38.50   67.00