Load the results of bootstrapping RUM and RRM models and prepare the data
rm(list = ls(all = TRUE))
lkp <- c('White', 'Black', 'Indian, Alaskan Native, Asian, Other', 'Hispanic or Latino')
print(cbind(1:4, lkp))
## lkp
## [1,] "1" "White"
## [2,] "2" "Black"
## [3,] "3" "Indian, Alaskan Native, Asian, Other"
## [4,] "4" "Hispanic or Latino"
library(ggplot2)
library(reshape2)
### RUM general results
load('RUM_wtp_ethnic_opt_out.RData')
variable_levels <- 1:4
rum_wtp <- sapply(variable_levels, function(lv){
sapply(1:50, function(x) RUM_wtp_ethnic_opt_out[[lv]][[x]][['wtp']])
})
rum_wtp <- data.frame(rum_wtp)
names(rum_wtp) <- lkp
### RRM Gender Results
load('RRM_wtp_ethnic_opt_out.RData')
length(RRM_wtp_ethnic_opt_out)
## [1] 4
rrm_wtp <- sapply(variable_levels, function(gdr){
sapply(1:50, function(x) mean(RRM_wtp_ethnic_opt_out[[gdr]][[x]]))
})
rrm_wtp <- data.frame(rrm_wtp)
names(rrm_wtp) <- lkp
Data reshaping to long format for plotting
m_rrm_wtp <- melt(rrm_wtp)
## No id variables; using all as measure variables
m_rum_wtp <- melt(rum_wtp)
## No id variables; using all as measure variables
m_rrm_wtp$Model <- 'RRM'
m_rum_wtp$Model <- 'RUM'
# Prepare the data for the plot
mdata <- data.frame(rbind(m_rrm_wtp, m_rum_wtp))
names(mdata) <- c('Ethnicity', 'Mean_WTP', 'Model')
mdata$Model <- as.factor(mdata$Model)
mdata$Ethnicity <- as.factor(mdata$Ethnicity)
p <- ggplot(mdata, aes(x=Model, y=Mean_WTP, fill=Model))
p <- p + geom_boxplot()
p <- p + theme_bw()
p <- p + facet_wrap(~Ethnicity, scales='free')
p <- p + labs(list(title="Comparison between RRM and RUM model's \naverage willingness to pay by Ethnicity",
y = 'Average willingness to pay'))
print(suppressWarnings(p))
p <- ggplot(mdata, aes(x=Mean_WTP, fill=Model))
p <- p + geom_histogram(aes(y = ..density..), alpha=.5) + geom_density(alpha=0.2)
p <- p + theme_bw()
p <- p + facet_wrap(~Ethnicity, scales='free')
p <- p + labs(list(title="Comparison between RRM and RUM model's \naverage willingness to pay by Ethnicity",
x = 'Bootstrapped Willingness to pay', y='Density'))
print(suppressWarnings(p))
var_levels <- unique(as.character(mdata$Ethnicity))
wtp_rum_1 <- sort(mdata[mdata$Model == 'RUM' & mdata$Ethnicity %in% var_levels[[1]], 'Mean_WTP'])
wtp_rum_2 <- sort(mdata[mdata$Model == 'RUM' & mdata$Ethnicity %in% var_levels[[2]], 'Mean_WTP'])
wtp_rum_3 <- sort(mdata[mdata$Model == 'RUM' & mdata$Ethnicity == var_levels[[3]], 'Mean_WTP'])
wtp_rum_4 <- sort(mdata[mdata$Model == 'RUM' & mdata$Ethnicity == var_levels[[4]], 'Mean_WTP'])
wtp_rrm_1 <- sort(mdata[mdata$Model == 'RRM' & mdata$Ethnicity == var_levels[[1]], 'Mean_WTP'])
wtp_rrm_2 <- sort(mdata[mdata$Model == 'RRM' & mdata$Ethnicity == var_levels[[2]], 'Mean_WTP'])
wtp_rrm_3 <- sort(mdata[mdata$Model == 'RRM' & mdata$Ethnicity == var_levels[[3]], 'Mean_WTP'])
wtp_rrm_4 <- sort(mdata[mdata$Model == 'RRM' & mdata$Ethnicity == var_levels[[4]], 'Mean_WTP'])
KS and Wilcox tests comparing each Income data
ks.test(wtp_rrm_1, wtp_rum_1)
##
## Two-sample Kolmogorov-Smirnov test
##
## data: wtp_rrm_1 and wtp_rum_1
## D = 0.92, p-value < 2.2e-16
## alternative hypothesis: two-sided
wilcox.test(wtp_rrm_1, wtp_rum_1)
##
## Wilcoxon rank sum test with continuity correction
##
## data: wtp_rrm_1 and wtp_rum_1
## W = 2470, p-value < 2.2e-16
## alternative hypothesis: true location shift is not equal to 0
ks.test(wtp_rrm_2, wtp_rum_2)
##
## Two-sample Kolmogorov-Smirnov test
##
## data: wtp_rrm_2 and wtp_rum_2
## D = 0.56, p-value = 1.453e-07
## alternative hypothesis: two-sided
wilcox.test(wtp_rrm_2, wtp_rum_2)
##
## Wilcoxon rank sum test with continuity correction
##
## data: wtp_rrm_2 and wtp_rum_2
## W = 2074, p-value = 1.37e-08
## alternative hypothesis: true location shift is not equal to 0
ks.test(wtp_rrm_3, wtp_rum_3)
##
## Two-sample Kolmogorov-Smirnov test
##
## data: wtp_rrm_3 and wtp_rum_3
## D = 0.88, p-value < 2.2e-16
## alternative hypothesis: two-sided
wilcox.test(wtp_rrm_3, wtp_rum_3)
##
## Wilcoxon rank sum test with continuity correction
##
## data: wtp_rrm_3 and wtp_rum_3
## W = 2358, p-value = 2.26e-14
## alternative hypothesis: true location shift is not equal to 0
ks.test(wtp_rrm_4, wtp_rum_4)
##
## Two-sample Kolmogorov-Smirnov test
##
## data: wtp_rrm_4 and wtp_rum_4
## D = 0.4, p-value = 0.0005823
## alternative hypothesis: two-sided
wilcox.test(wtp_rrm_4, wtp_rum_4)
##
## Wilcoxon rank sum test with continuity correction
##
## data: wtp_rrm_4 and wtp_rum_4
## W = 1749, p-value = 0.0005891
## alternative hypothesis: true location shift is not equal to 0
# summary functions used below
sumarizar <- function(x){
ls = list(c(mean(x), sd(x)), quantile(x))
names(ls)[[1]] <- 'Mean and SD'
names(ls)[[2]] <- 'Quantile'
return(ls)
}
mean_density <- function(wtp_rum_i, avgwtp){
ns <- length(wtp_rum_i)
density <- rep(NA, ns)
for(i in 1:ns){
density[i] <- mean( (wtp_rum_i[i] > avgwtp))
}
mean(density)
}
pnorm2 <- function(wtp_rum_1, wtp_rrm_1){
pnorm( (mean(wtp_rrm_1)-mean(wtp_rum_1)) /
sqrt(var(wtp_rrm_1) + var(wtp_rum_1)), lower.tail = FALSE)
}
sumarizar(wtp_rrm_1)
## $`Mean and SD`
## [1] 210.8227 47.8646
##
## $Quantile
## 0% 25% 50% 75% 100%
## 97.75013 176.65387 210.38585 241.38409 318.66766
sumarizar(wtp_rum_1)
## $`Mean and SD`
## [1] 87.10588 31.82039
##
## $Quantile
## 0% 25% 50% 75% 100%
## 11.64370 59.99135 85.45423 107.59886 157.26874
sumarizar(wtp_rrm_2)
## $`Mean and SD`
## [1] 309.3654 150.0753
##
## $Quantile
## 0% 25% 50% 75% 100%
## -108.8755 227.5405 334.2699 397.4069 634.0124
sumarizar(wtp_rum_2)
## $`Mean and SD`
## [1] 130.2062 114.6462
##
## $Quantile
## 0% 25% 50% 75% 100%
## -182.27912 72.97888 122.32012 213.80035 334.69260
sumarizar(wtp_rrm_3)
## $`Mean and SD`
## [1] 1238.030 1322.068
##
## $Quantile
## 0% 25% 50% 75% 100%
## 66.33406 501.77822 807.83385 1277.19687 7088.83229
sumarizar(wtp_rum_3)
## $`Mean and SD`
## [1] 200.8518 140.4476
##
## $Quantile
## 0% 25% 50% 75% 100%
## -69.9917 89.7675 210.3698 306.3625 547.4369
sumarizar(wtp_rrm_4)
## $`Mean and SD`
## [1] 294.5571 111.6429
##
## $Quantile
## 0% 25% 50% 75% 100%
## 40.6505 232.1739 297.3461 382.3721 539.2188
sumarizar(wtp_rum_4)
## $`Mean and SD`
## [1] 210.4596 126.1111
##
## $Quantile
## 0% 25% 50% 75% 100%
## 0.05608765 143.81769296 221.66841932 282.46722414 492.63704548
# Mean density
mean_density(wtp_rum_1, wtp_rrm_1)
## [1] 0.012
mean_density(wtp_rum_2, wtp_rrm_2)
## [1] 0.1704
mean_density(wtp_rum_3, wtp_rrm_3)
## [1] 0.0568
mean_density(wtp_rum_4, wtp_rrm_4)
## [1] 0.3004
# pnorm2 is Defined above
pnorm2(wtp_rum_1, wtp_rrm_1)
## [1] 0.01568004
pnorm2(wtp_rum_2, wtp_rrm_2)
## [1] 0.1713972
pnorm2(wtp_rum_3, wtp_rrm_3)
## [1] 0.2176595
pnorm2(wtp_rum_4, wtp_rrm_4)
## [1] 0.3087815