The goal of this exercise is to make you familiar with how to download data from Google Sheets and to briefly review some key concepts R functions and coding concepts.

We’ll do the following things

(TODO: MAKE YOUR OWN OUTLINE)

Packages

## Google sheets download package
# comment this out when you are done
#install.packages("googlesheets4")
library(googlesheets4)

# comp bio packages
library(seqinr)
library(rentrez)
library(compbio4all)
library(Biostrings)
## Loading required package: BiocGenerics
## Loading required package: parallel
## 
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:parallel':
## 
##     clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
##     clusterExport, clusterMap, parApply, parCapply, parLapply,
##     parLapplyLB, parRapply, parSapply, parSapplyLB
## The following objects are masked from 'package:stats':
## 
##     IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
## 
##     anyDuplicated, append, as.data.frame, basename, cbind, colnames,
##     dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
##     grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
##     order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
##     rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
##     union, unique, unsplit, which.max, which.min
## Loading required package: S4Vectors
## Loading required package: stats4
## 
## Attaching package: 'S4Vectors'
## The following objects are masked from 'package:base':
## 
##     expand.grid, I, unname
## Loading required package: IRanges
## 
## Attaching package: 'IRanges'
## The following object is masked from 'package:grDevices':
## 
##     windows
## Loading required package: XVector
## Loading required package: GenomeInfoDb
## 
## Attaching package: 'Biostrings'
## The following object is masked from 'package:seqinr':
## 
##     translate
## The following object is masked from 'package:base':
## 
##     strsplit

Download data

We are grabbing a url

spreadsheet_sp <- "https://docs.google.com/spreadsheets/d/1spC_ZA3_cVuvU3e_Jfcj2nEIfzp-vaP7SA5f-qwQ1pg/edit?usp=sharing" 

We are saying that we do not want author credentials

# be sure to run this!
googlesheets4::gs4_deauth()   # <====== MUST RUN THIS

Third, we download our data.

NOTE!: sometimes Google Sheets or the function gets cranky and throws this error:

“Error in curl::curl_fetch_memory(url, handle = handle) : Error in the HTTP2 framing layer”

If that happens, just re-run the code.

# I include this again in case you missed is the first time : )
googlesheets4::gs4_deauth()  

# download
## NOTE: if you get an error, just run the code again
refseq_column <- read_sheet(ss = spreadsheet_sp, # the url
           sheet = "RefSeq_prot",                # the name of the worksheet
           range = "selenoprot!H1:H364",
           col_names = TRUE,
           na = "",                              # fill in empty spaces "" w/NA
           trim_ws = TRUE)
## v Reading from "human_gene_table".
## v Range ''selenoprot'!H1:H364'.
## NOTE: if you get an error, just run the code again

# for reasons we won't get into I'm going to do this
protein_refseq <- refseq_column$RefSeq_prot

The first ten elements in the coloumn we grabbed

protein_refseq[1:10]
##  [1] "NP_000783.2"    "NP_998758.1"    "NP_001034804.1" "NP_001034805.1"
##  [5] "NP_001311245.1" NA               NA               "NP_054644.1"   
##  [9] "NP_001353425.1" "NP_000784.3"

We are grabbing another coloumn

# download
## NOTE: if you get an error, just run the code again
gene_name_column <- read_sheet(ss = spreadsheet_sp, # the url
           sheet = "gene",                # the name of the worksheet
           range = "selenoprot!A1:A364",
           col_names = TRUE,
           na = "",                              # fill in empty spaces "" w/NA
           trim_ws = TRUE)
## v Reading from "human_gene_table".
## v Range ''selenoprot'!A1:A364'.
## NOTE: if you get an error, just run the code again

# for reasons we won't get into I'm going to do this
gene <- gene_name_column$gene

Verifying Data

We are verifying the data we put into protein_refseq

is(protein_refseq)
##  [1] "character"               "vector"                 
##  [3] "data.frameRowLabels"     "SuperClassMethod"       
##  [5] "character_OR_connection" "character_OR_NULL"      
##  [7] "atomic"                  "EnumerationValue"       
##  [9] "vector_OR_Vector"        "vector_OR_factor"
class(protein_refseq)
## [1] "character"
length(protein_refseq)
## [1] 363
protein_refseq[1:10]
##  [1] "NP_000783.2"    "NP_998758.1"    "NP_001034804.1" "NP_001034805.1"
##  [5] "NP_001311245.1" NA               NA               "NP_054644.1"   
##  [9] "NP_001353425.1" "NP_000784.3"

Now we check for the presence of NAs

is.na(protein_refseq)
##   [1] FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE
##  [13]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE
##  [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE
##  [37] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [49] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [73]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [109] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [121]  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
## [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [145] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
## [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [169] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [193] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE
## [205] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [217] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE
## [253] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [265] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [277] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
## [289]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [301] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [313] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [325] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
## [337] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [349] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [361] FALSE FALSE FALSE

We can then grab the frequency of NAs

table(is.na(protein_refseq))
## 
## FALSE  TRUE 
##   334    29

This is another way to determine how many NAs are present

# ...
temp <- is.na(protein_refseq)

# ....
protein_refseq[temp]
##  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [26] NA NA NA NA
temp2 <- protein_refseq[temp]

# ...
length(temp2)
## [1] 29

Creating a Data Frame

We will make a data frame to organize all data

seleno_df <- data.frame(gene = gene,
                        protein_refseq = protein_refseq)

This code chunck details what is in the dataframe and the first few rows

summary(seleno_df)
##      gene           protein_refseq    
##  Length:363         Length:363        
##  Class :character   Class :character  
##  Mode  :character   Mode  :character
head(seleno_df)
##   gene protein_refseq
## 1 DIO1    NP_000783.2
## 2 DIO1    NP_998758.1
## 3 DIO1 NP_001034804.1
## 4 DIO1 NP_001034805.1
## 5 DIO1 NP_001311245.1
## 6 DIO1           <NA>

Removing NAs

We can remove all the NAs with the code below

# omit NAs
seleno_df_noNA <- na.omit(seleno_df)

# check length- should be shorter
dim(seleno_df)
## [1] 363   2
dim(seleno_df_noNA)
## [1] 334   2

Selecting Once Isoform

The same gene can appear multiple times because multiple isoforms are listed.

head(seleno_df_noNA)
##   gene protein_refseq
## 1 DIO1    NP_000783.2
## 2 DIO1    NP_998758.1
## 3 DIO1 NP_001034804.1
## 4 DIO1 NP_001034805.1
## 5 DIO1 NP_001311245.1
## 8 DIO2    NP_054644.1

The unique function allows us to select one row for each gene

genes_unique <- unique(seleno_df_noNA$gene)
length(genes_unique)
## [1] 37
genes_unique
##  [1] "DIO1"     "DIO2"     "DIO3"     "GPX1"     "GPX2"     "GPX3"    
##  [7] "GPX4"     "GPX6"     "MSRB1"    "SELENOF"  "SELENOH"  "SELENOI" 
## [13] "SELENOK"  "SELENOM"  "SELENON"  "SELENOO"  "SELENOP"  "SELENOS" 
## [19] "SELENOT"  "SELENOV"  "SELENOW"  "SEPHS2"   "TXNRD1"   "TXNRD2"  
## [25] "TXNRD3"   "SELENOP1" "SELENOP2" "SELENOU"  "SELENOW1" "SELENOW2"
## [31] "SELENOE"  "SELENOJ"  "SELENOL"  "SELENOO1" "SELENOO2" "SELENOT1"
## [37] "SELENOT2"

unique() just gives us the unique elements. A related function, duplicated(), gives us the location of duplicated elements in the vector. FALSE means “not duplicated yet” or “first instance so far”.

i.dups <- duplicated(seleno_df_noNA$gene)

We can remove the duplicates using a form of reverse indexing where the “!” means “not”. (You don’t need to know this for the exam)

seleno_df_noNA[!i.dups, ]
##         gene protein_refseq
## 1       DIO1    NP_000783.2
## 8       DIO2    NP_054644.1
## 14      DIO3    NP_001353.4
## 15      GPX1    NP_000572.2
## 20      GPX2    NP_002074.2
## 24      GPX3    NP_002075.2
## 26      GPX4    NP_002076.2
## 29      GPX6    NP_874360.1
## 30     MSRB1    NP_057416.1
## 31   SELENOF    NP_004252.2
## 35   SELENOH    NP_734467.1
## 37   SELENOI    NP_277040.1
## 39   SELENOK    NP_067060.2
## 40   SELENOM    NP_536355.1
## 41   SELENON    NP_996809.1
## 43   SELENOO    NP_113642.1
## 44   SELENOP    NP_005401.3
## 47   SELENOS    NP_060915.2
## 49   SELENOT    NP_057359.2
## 50   SELENOV    NP_874363.1
## 53   SELENOW    NP_003000.1
## 54    SEPHS2    NP_036380.2
## 55    TXNRD1    NP_877393.1
## 62    TXNRD2    NP_006431.2
## 69    TXNRD3    NP_443115.1
## 232 SELENOP1 NP_001026780.2
## 233 SELENOP2 NP_001335698.1
## 236  SELENOU NP_001180447.1
## 268 SELENOW1 NP_001291715.2
## 269 SELENOW2 NP_001341647.1
## 334  SELENOE NP_001182713.2
## 338  SELENOJ NP_001180398.1
## 340  SELENOL NP_001177311.1
## 343 SELENOO1 NP_001038336.2
## 344 SELENOO2 NP_001335014.1
## 348 SELENOT1    NP_840075.2
## 350 SELENOT2 NP_001091957.2

Make a dataframe of non-duplicated genes

seleno_df_noDups <- seleno_df_noNA[!i.dups, ]
dim(seleno_df_noDups)
## [1] 37  2

Selecting Two Random Sequences

Let’s select 2 random sequences to work with. We’ll use WHICH FUNCTION? to select a random index number to get

First, lets make a vector that contains a unique number for each row of data

indices <- 1:nrow(seleno_df_noDups)

This would do the same thing

# with dim
indices <- 1:dim(seleno_df_noDups)[1]

# with length
indices <- 1:length(seleno_df_noDups$gene)

or hard-coded

indices <- 1:37

We can then use WHICH FUNCTION? to select 2 random numbers from this vector.

For x = we’ll use our vector of indices (1 to 37). For size we’ll use 2, since we want to pull out just 2 numbers. For replace we’ll use WHAT? since we don’t want to be ale to select the same number twice.

i.random.genes <- sample(x = indices,
                         size = 2,
                         replace = FALSE)

Hard coded this would be

i.random.genes <- sample(x = c(1:37),
                         size = 2,
                         replace = FALSE)

This gives me 2 indices values.

i.random.genes
## [1] 30 33

I can now use these index values to pull out 2 rows of data

seleno_df_noNA[i.random.genes, ]
##       gene protein_refseq
## 40 SELENOM    NP_536355.1
## 43 SELENOO    NP_113642.1

Hard coded, this would be something like this for whichever genes happen to have been selected

seleno_df_noNA[c(37,15), ]
##       gene protein_refseq
## 47 SELENOS    NP_060915.2
## 19    GPX1 NP_001316384.1

Downloading genes

I will now grab two fasta files

rentrez::entrez_fetch(id = "NP_060915.2",
                      db = "protein",
                      rettype = "fasta")
## [1] ">NP_060915.2 selenoprotein S isoform 1 [Homo sapiens]\nMERQEESLSARPALETEGLRFLHTTVGSLLATYGWYIVFSCILLYVVFQKLSARLRALRQRQLDRAAAAV\nEPDVVVKRQEALAAARLKMQEELNAQVEKHKEKLKQLEEEKRRQKIEMWDSMQEGKSYKGNAKKPQEEDS\nPGPSTSSVLKRKSDRKPLRGGGYNPLSGEGGGACSWRPGRRGPSSGGUG\n\n"
rentrez::entrez_fetch(id = "NP_001316384.1",
                      db = "protein",
                      rettype = "fasta")
## [1] ">NP_001316384.1 glutathione peroxidase 1 isoform 5 [Homo sapiens]\nMCAARLAAAAAAAQSVYAFSARPLAGGEPVSLGSLRGKENAKNEEILNSLKYVRPGGGFEPNFMLFEKCE\nVNGAGAHPLFAFLREALPAPSDDATALMTDPKLITWSPVCRNDVAWNFEKFLVGPDGVPLRRYSRRFQTI\nDIEPDIEALLSQGPSCA\n\n"

We then create two vectors for the grabbed fasta files

prot1 <- rentrez::entrez_fetch(id = "NP_060915.2",
                      db = "protein",
                      rettype = "fasta")

prot2 <- rentrez::entrez_fetch(id = "NP_001316384.1",
                      db = "protein",
                      rettype = "fasta")

I can put them into a list like this

# make the WHAT?
seleno_thingy <- vector("list", 1)


# add the first fasta
seleno_thingy[[1]] <- prot1

# See the result
seleno_thingy
## [[1]]
## [1] ">NP_060915.2 selenoprotein S isoform 1 [Homo sapiens]\nMERQEESLSARPALETEGLRFLHTTVGSLLATYGWYIVFSCILLYVVFQKLSARLRALRQRQLDRAAAAV\nEPDVVVKRQEALAAARLKMQEELNAQVEKHKEKLKQLEEEKRRQKIEMWDSMQEGKSYKGNAKKPQEEDS\nPGPSTSSVLKRKSDRKPLRGGGYNPLSGEGGGACSWRPGRRGPSSGGUG\n\n"
# add the first fasta
seleno_thingy[[2]] <- prot2

# see the result
seleno_thingy
## [[1]]
## [1] ">NP_060915.2 selenoprotein S isoform 1 [Homo sapiens]\nMERQEESLSARPALETEGLRFLHTTVGSLLATYGWYIVFSCILLYVVFQKLSARLRALRQRQLDRAAAAV\nEPDVVVKRQEALAAARLKMQEELNAQVEKHKEKLKQLEEEKRRQKIEMWDSMQEGKSYKGNAKKPQEEDS\nPGPSTSSVLKRKSDRKPLRGGGYNPLSGEGGGACSWRPGRRGPSSGGUG\n\n"
## 
## [[2]]
## [1] ">NP_001316384.1 glutathione peroxidase 1 isoform 5 [Homo sapiens]\nMCAARLAAAAAAAQSVYAFSARPLAGGEPVSLGSLRGKENAKNEEILNSLKYVRPGGGFEPNFMLFEKCE\nVNGAGAHPLFAFLREALPAPSDDATALMTDPKLITWSPVCRNDVAWNFEKFLVGPDGVPLRRYSRRFQTI\nDIEPDIEALLSQGPSCA\n\n"
# WHAT DOES THIS DO?
names(seleno_thingy) <- c("prot1", "prot2")

#Output
seleno_thingy
## $prot1
## [1] ">NP_060915.2 selenoprotein S isoform 1 [Homo sapiens]\nMERQEESLSARPALETEGLRFLHTTVGSLLATYGWYIVFSCILLYVVFQKLSARLRALRQRQLDRAAAAV\nEPDVVVKRQEALAAARLKMQEELNAQVEKHKEKLKQLEEEKRRQKIEMWDSMQEGKSYKGNAKKPQEEDS\nPGPSTSSVLKRKSDRKPLRGGGYNPLSGEGGGACSWRPGRRGPSSGGUG\n\n"
## 
## $prot2
## [1] ">NP_001316384.1 glutathione peroxidase 1 isoform 5 [Homo sapiens]\nMCAARLAAAAAAAQSVYAFSARPLAGGEPVSLGSLRGKENAKNEEILNSLKYVRPGGGFEPNFMLFEKCE\nVNGAGAHPLFAFLREALPAPSDDATALMTDPKLITWSPVCRNDVAWNFEKFLVGPDGVPLRRYSRRFQTI\nDIEPDIEALLSQGPSCA\n\n"

Elements of the list are accessed like this

seleno_thingy[[1]]
## [1] ">NP_060915.2 selenoprotein S isoform 1 [Homo sapiens]\nMERQEESLSARPALETEGLRFLHTTVGSLLATYGWYIVFSCILLYVVFQKLSARLRALRQRQLDRAAAAV\nEPDVVVKRQEALAAARLKMQEELNAQVEKHKEKLKQLEEEKRRQKIEMWDSMQEGKSYKGNAKKPQEEDS\nPGPSTSSVLKRKSDRKPLRGGGYNPLSGEGGGACSWRPGRRGPSSGGUG\n\n"

I’ll clean them with fasta_cleaner()

# first, make a copy of the list for storing the clean data
## I'm just going to copy over the old data
seleno_thingy_clean <- seleno_thingy


# HOW TO MAKE THIS MORE COMPACT?
for(i in 1:length(seleno_thingy_clean)){
   clean_fasta_temp <- compbio4all::fasta_cleaner(seleno_thingy[[i]],
                                                       parse = T)
  
  seleno_thingy_clean[[i]] <- clean_fasta_temp
}

Now the data looks like this Each amino acid is easily seen

seleno_thingy_clean
## $prot1
##   [1] "M" "E" "R" "Q" "E" "E" "S" "L" "S" "A" "R" "P" "A" "L" "E" "T" "E" "G"
##  [19] "L" "R" "F" "L" "H" "T" "T" "V" "G" "S" "L" "L" "A" "T" "Y" "G" "W" "Y"
##  [37] "I" "V" "F" "S" "C" "I" "L" "L" "Y" "V" "V" "F" "Q" "K" "L" "S" "A" "R"
##  [55] "L" "R" "A" "L" "R" "Q" "R" "Q" "L" "D" "R" "A" "A" "A" "A" "V" "E" "P"
##  [73] "D" "V" "V" "V" "K" "R" "Q" "E" "A" "L" "A" "A" "A" "R" "L" "K" "M" "Q"
##  [91] "E" "E" "L" "N" "A" "Q" "V" "E" "K" "H" "K" "E" "K" "L" "K" "Q" "L" "E"
## [109] "E" "E" "K" "R" "R" "Q" "K" "I" "E" "M" "W" "D" "S" "M" "Q" "E" "G" "K"
## [127] "S" "Y" "K" "G" "N" "A" "K" "K" "P" "Q" "E" "E" "D" "S" "P" "G" "P" "S"
## [145] "T" "S" "S" "V" "L" "K" "R" "K" "S" "D" "R" "K" "P" "L" "R" "G" "G" "G"
## [163] "Y" "N" "P" "L" "S" "G" "E" "G" "G" "G" "A" "C" "S" "W" "R" "P" "G" "R"
## [181] "R" "G" "P" "S" "S" "G" "G" "U" "G"
## 
## $prot2
##   [1] "M" "C" "A" "A" "R" "L" "A" "A" "A" "A" "A" "A" "A" "Q" "S" "V" "Y" "A"
##  [19] "F" "S" "A" "R" "P" "L" "A" "G" "G" "E" "P" "V" "S" "L" "G" "S" "L" "R"
##  [37] "G" "K" "E" "N" "A" "K" "N" "E" "E" "I" "L" "N" "S" "L" "K" "Y" "V" "R"
##  [55] "P" "G" "G" "G" "F" "E" "P" "N" "F" "M" "L" "F" "E" "K" "C" "E" "V" "N"
##  [73] "G" "A" "G" "A" "H" "P" "L" "F" "A" "F" "L" "R" "E" "A" "L" "P" "A" "P"
##  [91] "S" "D" "D" "A" "T" "A" "L" "M" "T" "D" "P" "K" "L" "I" "T" "W" "S" "P"
## [109] "V" "C" "R" "N" "D" "V" "A" "W" "N" "F" "E" "K" "F" "L" "V" "G" "P" "D"
## [127] "G" "V" "P" "L" "R" "R" "Y" "S" "R" "R" "F" "Q" "T" "I" "D" "I" "E" "P"
## [145] "D" "I" "E" "A" "L" "L" "S" "Q" "G" "P" "S" "C" "A"

Then we can se that each list element of the list is a vector of characters

class(seleno_thingy_clean[[1]])
## [1] "character"
is(seleno_thingy_clean[[1]])
##  [1] "character"               "vector"                 
##  [3] "data.frameRowLabels"     "SuperClassMethod"       
##  [5] "character_OR_connection" "character_OR_NULL"      
##  [7] "atomic"                  "EnumerationValue"       
##  [9] "vector_OR_Vector"        "vector_OR_factor"
is.vector(seleno_thingy_clean[[1]])
## [1] TRUE

Make an dotplot

For old-times sake we can make a dotplot.
Now for a dotplot

Creating a vector from the list

prot1_vector <- seleno_thingy_clean[[1]]
prot2_vector <- seleno_thingy_clean[[2]]

We can dotplot like this

seqinr::dotPlot(prot1_vector,
                prot1_vector)

This plots directly from the lists

seqinr::dotPlot(seleno_thingy_clean[[1]],
                seleno_thingy_clean[[2]])

Pairwise alignment

dotPlot likes things in a single vector, but pairwiseAlignment like a single string of characters, so as always we have to process the data.

We are using the paste function to bring the elements of the vector together. The "" allows for us to seperate without a space

prot1_str <- paste(seleno_thingy_clean[[1]],sep = "", collapse = "")
prot2_str <- paste(seleno_thingy_clean[[2]],sep = "", collapse = "")

So now things look like this Each amino acid is shown in a sequence

prot1_str
## [1] "MERQEESLSARPALETEGLRFLHTTVGSLLATYGWYIVFSCILLYVVFQKLSARLRALRQRQLDRAAAAVEPDVVVKRQEALAAARLKMQEELNAQVEKHKEKLKQLEEEKRRQKIEMWDSMQEGKSYKGNAKKPQEEDSPGPSTSSVLKRKSDRKPLRGGGYNPLSGEGGGACSWRPGRRGPSSGGUG"

Protein alignments need a amino acid transition matrix, and we need to use data() to bring those up into active memory (VERY IMPORTANT STEP!)

data(BLOSUM50)

The alignment

align_out <- Biostrings::pairwiseAlignment(pattern = prot1_str, 
                              subject = prot2_str, 
                              type = "global",
                              gapOpening = -9.5,
                              gapExtension = -0.5)

This is the initial alignment

align_out
## Global PairwiseAlignmentsSingleSubject (1 of 1)
## pattern: MERQEESLSARPALETEGLRFLHTTVGSLLATYG...-----------------ACSWRPGRRGPSSGGUG
## subject: M---------------------------------...IDIEPDIEALLSQGPSCA----------------
## score: -160.2561

This is a full alignment filled with gaps

compbio4all::print_pairwise_alignment(align_out)
## [1] "MERQEESLSARPALETEGLRFLHTTVGSLLATYGWYIVFSCILLYVVFQKLSARLRALRQ 60"
## [1] "M---------------------------------------C----------AARL----- 6"
## [1] " "
## [1] "RQLDRAAAAVEPDVVVKRQEALAAA--------RLKMQEELNAQVEKHKEKLKQLEEEKR 112"
## [1] "-----AAAA-------------AAAQSVYAFSAR-------------------------- 22"
## [1] " "
## [1] "RQKIEMWDSMQEGKSYKGNAKKPQEEDSPGPSTSSVLKRKSDRKPLRGGGYNPLSGE--- 169"
## [1] "--------------------------------------------PLAGG-------EPVS 31"
## [1] " "
## [1] "------------------------GGG--------------------------------- 172"
## [1] "LGSLRGKENAKNEEILNSLKYVRPGGGFEPNFMLFEKCEVNGAGAHPLFAFLREALPAPS 91"
## [1] " "
## [1] "------------------------------------------------------------ 172"
## [1] "DDATALMTDPKLITWSPVCRNDVAWNFEKFLVGPDGVPLRRYSRRFQTIDIEPDIEALLS 151"
## [1] " "
## [1] "-----A 227"
## [1] "QGPSCA 211"
## [1] " "

These are two randomly chosen sequences, so the alignment should be pretty low in commonality

The score is negative, but on its own means very little

score(align_out)
## [1] -160.2561

pid gives us the percent identity of the sequences

pid(align_out)
## [1] 7.189542

Of course, pid can be calculated several ways based off of the denominator which can lead to different interpretations on how similar two sequences are

pid(align_out,type = "PID1")
## [1] 7.189542
pid(align_out,type = "PID2")
## [1] 91.66667
pid(align_out,type = "PID3")
## [1] 14.01274
pid(align_out,type = "PID4")
## [1] 12.71676