The goal of this exercise is to make you familiar with how to download data from Google Sheets and to briefly review some key concepts R functions and coding concepts.

We’ll do the following things

Load necessary packages Download our outside data from google docs Process the data Setting up the process Using code to input 2 sequences to be aligned Making plots and performing an alignment Finding pid

Packages

## Google sheets download package
# comment this out when you are done
# install.packages("googlesheets4")
library(googlesheets4)

# comp bio packages
library(seqinr)
library(rentrez)
library(compbio4all)
library(Biostrings)
## Loading required package: BiocGenerics
## Loading required package: parallel
## 
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:parallel':
## 
##     clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
##     clusterExport, clusterMap, parApply, parCapply, parLapply,
##     parLapplyLB, parRapply, parSapply, parSapplyLB
## The following objects are masked from 'package:stats':
## 
##     IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
## 
##     anyDuplicated, append, as.data.frame, basename, cbind, colnames,
##     dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
##     grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
##     order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
##     rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
##     union, unique, unsplit, which.max, which.min
## Loading required package: S4Vectors
## Loading required package: stats4
## 
## Attaching package: 'S4Vectors'
## The following objects are masked from 'package:base':
## 
##     expand.grid, I, unname
## Loading required package: IRanges
## 
## Attaching package: 'IRanges'
## The following object is masked from 'package:grDevices':
## 
##     windows
## Loading required package: XVector
## Loading required package: GenomeInfoDb
## 
## Attaching package: 'Biostrings'
## The following object is masked from 'package:seqinr':
## 
##     translate
## The following object is masked from 'package:base':
## 
##     strsplit

Download data

This is a variable containing the data from the google docs.

spreadsheet_sp <- "https://docs.google.com/spreadsheets/d/1spC_ZA3_cVuvU3e_Jfcj2nEIfzp-vaP7SA5f-qwQ1pg/edit?usp=sharing" 

This interprets the recently input data and allows us to skip authorization.

# be sure to run this!
googlesheets4::gs4_deauth()   # <====== MUST RUN THIS

Third, we download our data.

NOTE!: sometimes Google Sheets or the function gets cranky and throws this error:

“Error in curl::curl_fetch_memory(url, handle = handle) : Error in the HTTP2 framing layer”

If that happens, just re-run the code.

# I include this again in case you missed is the first time : )
googlesheets4::gs4_deauth()  

# download
## NOTE: if you get an error, just run the code again
refseq_column <- read_sheet(ss = spreadsheet_sp, # the url
           sheet = "RefSeq_prot",                # the name of the worksheet
           range = "selenoprot!H1:H364",
           col_names = TRUE,
           na = "",                              # fill in empty spaces "" w/NA
           trim_ws = TRUE)
## v Reading from "human_gene_table".
## v Range ''selenoprot'!H1:H364'.
## NOTE: if you get an error, just run the code again

# for reasons we won't get into I'm going to do this
protein_refseq <- refseq_column$RefSeq_prot

This is selecting a smaller portion of the protein to look at.

protein_refseq[1:10]
##  [1] "NP_000783.2"    "NP_998758.1"    "NP_001034804.1" "NP_001034805.1"
##  [5] "NP_001311245.1" NA               NA               "NP_054644.1"   
##  [9] "NP_001353425.1" "NP_000784.3"

This is downloading the spreadsheet and working with different options for its appearance.

# download
## NOTE: if you get an error, just run the code again
gene_name_column <- read_sheet(ss = spreadsheet_sp, # the url
           sheet = "gene",                # the name of the worksheet
           range = "selenoprot!A1:A364",
           col_names = TRUE,
           na = "",                              # fill in empty spaces "" w/NA
           trim_ws = TRUE)
## v Reading from "human_gene_table".
## v Range ''selenoprot'!A1:A364'.
## NOTE: if you get an error, just run the code again

# for reasons we won't get into I'm going to do this
gene <- gene_name_column$gene

##Classifying and Analyzing the Sequence

This gives us a better idea of the type of data we are working with.

is(protein_refseq)
##  [1] "character"               "vector"                 
##  [3] "data.frameRowLabels"     "SuperClassMethod"       
##  [5] "character_OR_connection" "character_OR_NULL"      
##  [7] "atomic"                  "EnumerationValue"       
##  [9] "vector_OR_Vector"        "vector_OR_factor"
class(protein_refseq)
## [1] "character"
length(protein_refseq)
## [1] 363
protein_refseq[1:10]
##  [1] "NP_000783.2"    "NP_998758.1"    "NP_001034804.1" "NP_001034805.1"
##  [5] "NP_001311245.1" NA               NA               "NP_054644.1"   
##  [9] "NP_001353425.1" "NP_000784.3"

This is giving us a look at whether there are NA in the sequence, marked by either TRUE for yes or FALSE for no.

is.na(protein_refseq)
##   [1] FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE
##  [13]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE
##  [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE
##  [37] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [49] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [73]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [109] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [121]  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
## [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [145] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
## [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [169] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [193] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE
## [205] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [217] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE
## [253] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [265] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [277] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
## [289]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [301] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [313] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [325] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
## [337] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [349] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [361] FALSE FALSE FALSE

This is making a nicer looking output of what we previously ran, making a table out of the number of TRUEs and FALSEs.

table(is.na(protein_refseq))
## 
## FALSE  TRUE 
##   334    29

This will produce information about the number of NA in the sequence.

# Stores number of NA
temp <- is.na(protein_refseq)

# Temp of protein_refseq in list form
protein_refseq[temp]
##  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [26] NA NA NA NA
temp2 <- protein_refseq[temp]

# Prints the number of NA in the vectored list
length(temp2)
## [1] 29

Creating a Dataframe

This is the data frame vector being stored in a variable.

seleno_df <- data.frame(gene = gene,
                        protein_refseq = protein_refseq)

This is creating a summary of the dataframe previously created, showing the contents at the beginning of the frame.

summary(seleno_df)
##      gene           protein_refseq    
##  Length:363         Length:363        
##  Class :character   Class :character  
##  Mode  :character   Mode  :character
head(seleno_df)
##   gene protein_refseq
## 1 DIO1    NP_000783.2
## 2 DIO1    NP_998758.1
## 3 DIO1 NP_001034804.1
## 4 DIO1 NP_001034805.1
## 5 DIO1 NP_001311245.1
## 6 DIO1           <NA>

Omitting the NAs from the Data

This function is taking out all of the NAs present in the sequence.

# omit NAs
seleno_df_noNA <- na.omit(seleno_df)

# check length- should be shorter
dim(seleno_df)
## [1] 363   2
dim(seleno_df_noNA)
## [1] 334   2

Looking for Isoforms

The same gene can appear multiple times because multiple isoforms are listed.

head(seleno_df_noNA)
##   gene protein_refseq
## 1 DIO1    NP_000783.2
## 2 DIO1    NP_998758.1
## 3 DIO1 NP_001034804.1
## 4 DIO1 NP_001034805.1
## 5 DIO1 NP_001311245.1
## 8 DIO2    NP_054644.1

This is finding the unique sequences so a prettier image can be presented.

genes_unique <- unique(seleno_df_noNA$gene)
length(genes_unique)
## [1] 37
genes_unique
##  [1] "DIO1"     "DIO2"     "DIO3"     "GPX1"     "GPX2"     "GPX3"    
##  [7] "GPX4"     "GPX6"     "MSRB1"    "SELENOF"  "SELENOH"  "SELENOI" 
## [13] "SELENOK"  "SELENOM"  "SELENON"  "SELENOO"  "SELENOP"  "SELENOS" 
## [19] "SELENOT"  "SELENOV"  "SELENOW"  "SEPHS2"   "TXNRD1"   "TXNRD2"  
## [25] "TXNRD3"   "SELENOP1" "SELENOP2" "SELENOU"  "SELENOW1" "SELENOW2"
## [31] "SELENOE"  "SELENOJ"  "SELENOL"  "SELENOO1" "SELENOO2" "SELENOT1"
## [37] "SELENOT2"

unique() just gives us the unique elements. A related function, duplicated(), gives us the location of duplicated elements in the vector. FALSE means “not duplicated yet” or “first instance so far”.

i.dups <- duplicated(seleno_df_noNA$gene)

We can remove the duplicates using a form of reverse indexing where the “!” means “not”. (You don’t need to know this for the exam)

seleno_df_noNA[!i.dups, ]
##         gene protein_refseq
## 1       DIO1    NP_000783.2
## 8       DIO2    NP_054644.1
## 14      DIO3    NP_001353.4
## 15      GPX1    NP_000572.2
## 20      GPX2    NP_002074.2
## 24      GPX3    NP_002075.2
## 26      GPX4    NP_002076.2
## 29      GPX6    NP_874360.1
## 30     MSRB1    NP_057416.1
## 31   SELENOF    NP_004252.2
## 35   SELENOH    NP_734467.1
## 37   SELENOI    NP_277040.1
## 39   SELENOK    NP_067060.2
## 40   SELENOM    NP_536355.1
## 41   SELENON    NP_996809.1
## 43   SELENOO    NP_113642.1
## 44   SELENOP    NP_005401.3
## 47   SELENOS    NP_060915.2
## 49   SELENOT    NP_057359.2
## 50   SELENOV    NP_874363.1
## 53   SELENOW    NP_003000.1
## 54    SEPHS2    NP_036380.2
## 55    TXNRD1    NP_877393.1
## 62    TXNRD2    NP_006431.2
## 69    TXNRD3    NP_443115.1
## 232 SELENOP1 NP_001026780.2
## 233 SELENOP2 NP_001335698.1
## 236  SELENOU NP_001180447.1
## 268 SELENOW1 NP_001291715.2
## 269 SELENOW2 NP_001341647.1
## 334  SELENOE NP_001182713.2
## 338  SELENOJ NP_001180398.1
## 340  SELENOL NP_001177311.1
## 343 SELENOO1 NP_001038336.2
## 344 SELENOO2 NP_001335014.1
## 348 SELENOT1    NP_840075.2
## 350 SELENOT2 NP_001091957.2

Make a dataframe of non-duplicated genes

seleno_df_noDups <- seleno_df_noNA[!i.dups, ]
dim(seleno_df_noDups)
## [1] 37  2

Working with Random Genes

Let’s select 2 random sequences to work with. We’ll use sample() to select a random index number to get

First, lets make a vector that contains a unique number for each row of data

indices <- 1:nrow(seleno_df_noDups)

This would do the same thing

# with dim
indices <- 1:dim(seleno_df_noDups)[1]

# with length
indices <- 1:length(seleno_df_noDups$gene)

or hard-coded

indices <- 1:37

We can then use sample() to select 2 random numbers from this vector.

For x = we’ll use our vector of indices (1 to 37). For size we’ll use 2, since we want to pull out just 2 numbers. For replace we’ll use WHAT? since we don’t want to be ale to select the same number twice.

i.random.genes <- sample(x = indices,
                         size = 2,
                         replace = FALSE)

Hard coded this would be

i.random.genes <- sample(x = c(1:37),
                         size = 2,
                         replace = FALSE)

This gives me two indices values.

i.random.genes
## [1] 31 20

I can now use these index values to pull out HOW MANY? rows of data

seleno_df_noNA[i.random.genes, ]
##       gene protein_refseq
## 41 SELENON    NP_996809.1
## 27    GPX4 NP_001034936.1

Hard coded, this would be something like this for whichever genes happen to have been selected

seleno_df_noNA[c(37,15), ]
##       gene protein_refseq
## 47 SELENOS    NP_060915.2
## 19    GPX1 NP_001316384.1

Downloading genes

I will now take accession numbers to download the sequences.

rentrez::entrez_fetch(id = "NP_060915.2",
                      db = "protein",
                      rettype = "fasta")
## [1] ">NP_060915.2 selenoprotein S isoform 1 [Homo sapiens]\nMERQEESLSARPALETEGLRFLHTTVGSLLATYGWYIVFSCILLYVVFQKLSARLRALRQRQLDRAAAAV\nEPDVVVKRQEALAAARLKMQEELNAQVEKHKEKLKQLEEEKRRQKIEMWDSMQEGKSYKGNAKKPQEEDS\nPGPSTSSVLKRKSDRKPLRGGGYNPLSGEGGGACSWRPGRRGPSSGGUG\n\n"
rentrez::entrez_fetch(id = "NP_001316384.1",
                      db = "protein",
                      rettype = "fasta")
## [1] ">NP_001316384.1 glutathione peroxidase 1 isoform 5 [Homo sapiens]\nMCAARLAAAAAAAQSVYAFSARPLAGGEPVSLGSLRGKENAKNEEILNSLKYVRPGGGFEPNFMLFEKCE\nVNGAGAHPLFAFLREALPAPSDDATALMTDPKLITWSPVCRNDVAWNFEKFLVGPDGVPLRRYSRRFQTI\nDIEPDIEALLSQGPSCA\n\n"

This is assigning each fetched sequence to a variable.

prot1 <- rentrez::entrez_fetch(id = "NP_060915.2",
                      db = "protein",
                      rettype = "fasta")

prot2 <- rentrez::entrez_fetch(id = "NP_001316384.1",
                      db = "protein",
                      rettype = "fasta")

I can put them into a list like this:

# make the list variable?
seleno_thingy <- vector("list", 1)


# add the first fasta
seleno_thingy[[1]] <- prot1

# See the result
seleno_thingy
## [[1]]
## [1] ">NP_060915.2 selenoprotein S isoform 1 [Homo sapiens]\nMERQEESLSARPALETEGLRFLHTTVGSLLATYGWYIVFSCILLYVVFQKLSARLRALRQRQLDRAAAAV\nEPDVVVKRQEALAAARLKMQEELNAQVEKHKEKLKQLEEEKRRQKIEMWDSMQEGKSYKGNAKKPQEEDS\nPGPSTSSVLKRKSDRKPLRGGGYNPLSGEGGGACSWRPGRRGPSSGGUG\n\n"
# add the first fasta
seleno_thingy[[2]] <- prot2

# see the result
seleno_thingy
## [[1]]
## [1] ">NP_060915.2 selenoprotein S isoform 1 [Homo sapiens]\nMERQEESLSARPALETEGLRFLHTTVGSLLATYGWYIVFSCILLYVVFQKLSARLRALRQRQLDRAAAAV\nEPDVVVKRQEALAAARLKMQEELNAQVEKHKEKLKQLEEEKRRQKIEMWDSMQEGKSYKGNAKKPQEEDS\nPGPSTSSVLKRKSDRKPLRGGGYNPLSGEGGGACSWRPGRRGPSSGGUG\n\n"
## 
## [[2]]
## [1] ">NP_001316384.1 glutathione peroxidase 1 isoform 5 [Homo sapiens]\nMCAARLAAAAAAAQSVYAFSARPLAGGEPVSLGSLRGKENAKNEEILNSLKYVRPGGGFEPNFMLFEKCE\nVNGAGAHPLFAFLREALPAPSDDATALMTDPKLITWSPVCRNDVAWNFEKFLVGPDGVPLRRYSRRFQTI\nDIEPDIEALLSQGPSCA\n\n"
# This respectively assigns names to the vectors previously created.
names(seleno_thingy) <- c("prot1", "prot2")

#Output
seleno_thingy
## $prot1
## [1] ">NP_060915.2 selenoprotein S isoform 1 [Homo sapiens]\nMERQEESLSARPALETEGLRFLHTTVGSLLATYGWYIVFSCILLYVVFQKLSARLRALRQRQLDRAAAAV\nEPDVVVKRQEALAAARLKMQEELNAQVEKHKEKLKQLEEEKRRQKIEMWDSMQEGKSYKGNAKKPQEEDS\nPGPSTSSVLKRKSDRKPLRGGGYNPLSGEGGGACSWRPGRRGPSSGGUG\n\n"
## 
## $prot2
## [1] ">NP_001316384.1 glutathione peroxidase 1 isoform 5 [Homo sapiens]\nMCAARLAAAAAAAQSVYAFSARPLAGGEPVSLGSLRGKENAKNEEILNSLKYVRPGGGFEPNFMLFEKCE\nVNGAGAHPLFAFLREALPAPSDDATALMTDPKLITWSPVCRNDVAWNFEKFLVGPDGVPLRRYSRRFQTI\nDIEPDIEALLSQGPSCA\n\n"

Elements of the list are accessed like this

seleno_thingy[[1]]
## [1] ">NP_060915.2 selenoprotein S isoform 1 [Homo sapiens]\nMERQEESLSARPALETEGLRFLHTTVGSLLATYGWYIVFSCILLYVVFQKLSARLRALRQRQLDRAAAAV\nEPDVVVKRQEALAAARLKMQEELNAQVEKHKEKLKQLEEEKRRQKIEMWDSMQEGKSYKGNAKKPQEEDS\nPGPSTSSVLKRKSDRKPLRGGGYNPLSGEGGGACSWRPGRRGPSSGGUG\n\n"

I’ll clean them with fasta_cleaner()

# first, make a copy of the list for storing the clean data
## I'm just going to copy over the old data
seleno_thingy_clean <- seleno_thingy


# Make a for loop to run for each sequence instead of making two separate.
for(i in 1:length(seleno_thingy_clean)){
   clean_fasta_temp <- compbio4all::fasta_cleaner(seleno_thingy[[i]],
                                                       parse = T)
  
  seleno_thingy_clean[[i]] <- clean_fasta_temp
}

Now the data looks like this This provides the sequences with each element as its own string. They are separated by sequence and it looks very clean and easy to read.

seleno_thingy_clean
## $prot1
##   [1] "M" "E" "R" "Q" "E" "E" "S" "L" "S" "A" "R" "P" "A" "L" "E" "T" "E" "G"
##  [19] "L" "R" "F" "L" "H" "T" "T" "V" "G" "S" "L" "L" "A" "T" "Y" "G" "W" "Y"
##  [37] "I" "V" "F" "S" "C" "I" "L" "L" "Y" "V" "V" "F" "Q" "K" "L" "S" "A" "R"
##  [55] "L" "R" "A" "L" "R" "Q" "R" "Q" "L" "D" "R" "A" "A" "A" "A" "V" "E" "P"
##  [73] "D" "V" "V" "V" "K" "R" "Q" "E" "A" "L" "A" "A" "A" "R" "L" "K" "M" "Q"
##  [91] "E" "E" "L" "N" "A" "Q" "V" "E" "K" "H" "K" "E" "K" "L" "K" "Q" "L" "E"
## [109] "E" "E" "K" "R" "R" "Q" "K" "I" "E" "M" "W" "D" "S" "M" "Q" "E" "G" "K"
## [127] "S" "Y" "K" "G" "N" "A" "K" "K" "P" "Q" "E" "E" "D" "S" "P" "G" "P" "S"
## [145] "T" "S" "S" "V" "L" "K" "R" "K" "S" "D" "R" "K" "P" "L" "R" "G" "G" "G"
## [163] "Y" "N" "P" "L" "S" "G" "E" "G" "G" "G" "A" "C" "S" "W" "R" "P" "G" "R"
## [181] "R" "G" "P" "S" "S" "G" "G" "U" "G"
## 
## $prot2
##   [1] "M" "C" "A" "A" "R" "L" "A" "A" "A" "A" "A" "A" "A" "Q" "S" "V" "Y" "A"
##  [19] "F" "S" "A" "R" "P" "L" "A" "G" "G" "E" "P" "V" "S" "L" "G" "S" "L" "R"
##  [37] "G" "K" "E" "N" "A" "K" "N" "E" "E" "I" "L" "N" "S" "L" "K" "Y" "V" "R"
##  [55] "P" "G" "G" "G" "F" "E" "P" "N" "F" "M" "L" "F" "E" "K" "C" "E" "V" "N"
##  [73] "G" "A" "G" "A" "H" "P" "L" "F" "A" "F" "L" "R" "E" "A" "L" "P" "A" "P"
##  [91] "S" "D" "D" "A" "T" "A" "L" "M" "T" "D" "P" "K" "L" "I" "T" "W" "S" "P"
## [109] "V" "C" "R" "N" "D" "V" "A" "W" "N" "F" "E" "K" "F" "L" "V" "G" "P" "D"
## [127] "G" "V" "P" "L" "R" "R" "Y" "S" "R" "R" "F" "Q" "T" "I" "D" "I" "E" "P"
## [145] "D" "I" "E" "A" "L" "L" "S" "Q" "G" "P" "S" "C" "A"

This is describing the attributes of the vector and giving us more information about it.

class(seleno_thingy_clean[[1]])
## [1] "character"
is(seleno_thingy_clean[[1]])
##  [1] "character"               "vector"                 
##  [3] "data.frameRowLabels"     "SuperClassMethod"       
##  [5] "character_OR_connection" "character_OR_NULL"      
##  [7] "atomic"                  "EnumerationValue"       
##  [9] "vector_OR_Vector"        "vector_OR_factor"
is.vector(seleno_thingy_clean[[1]])
## [1] TRUE

Make an dotplot

For old-times sake we can make a dotplot.
Now for a dotplot

We are making vectors for specific elements.

prot1_vector <- seleno_thingy_clean[[1]]
prot2_vector <- seleno_thingy_clean[[2]]

We can dotplot like this

seqinr::dotPlot(prot1_vector,
                prot1_vector)

We chose to not use the stored variable name but rather the initial name of the data.

seqinr::dotPlot(seleno_thingy_clean[[1]],
                seleno_thingy_clean[[2]])

Pairwise alignment

dotPlot likes things in a single vector, but pairwiseAlignment like a single string of characters, so as always we have to process the data.

Now, the elements of each sequence vector are being collapsed together into a single string. The "" following the collapse argument indicate that there will be no spaces separating the characters, but rather all in succession with nothing in between.

prot1_str <- paste(seleno_thingy_clean[[1]],sep = "", collapse = "")
prot2_str <- paste(seleno_thingy_clean[[2]],sep = "", collapse = "")

So now things look like this This is the single string that resulted from the previous code chunk.

prot1_str
## [1] "MERQEESLSARPALETEGLRFLHTTVGSLLATYGWYIVFSCILLYVVFQKLSARLRALRQRQLDRAAAAVEPDVVVKRQEALAAARLKMQEELNAQVEKHKEKLKQLEEEKRRQKIEMWDSMQEGKSYKGNAKKPQEEDSPGPSTSSVLKRKSDRKPLRGGGYNPLSGEGGGACSWRPGRRGPSSGGUG"

Protein alignments need a amino acid transition matrix, and we need to use data() to bring those up into active memory (VERY IMPORTANT STEP!)

data(BLOSUM50)

The alignment

align_out <- Biostrings::pairwiseAlignment(pattern = prot1_str, 
                              subject = prot2_str, 
                              type = "global",
                              gapOpening = -9.5,
                              gapExtension = -0.5)

This gives the alingment score.

align_out
## Global PairwiseAlignmentsSingleSubject (1 of 1)
## pattern: MERQEESLSARPALETEGLRFLHTTVGSLLATYG...-----------------ACSWRPGRRGPSSGGUG
## subject: M---------------------------------...IDIEPDIEALLSQGPSCA----------------
## score: -160.2561

This is a different way of portraying the alignment results, but does not include the score.

compbio4all::print_pairwise_alignment(align_out)
## [1] "MERQEESLSARPALETEGLRFLHTTVGSLLATYGWYIVFSCILLYVVFQKLSARLRALRQ 60"
## [1] "M---------------------------------------C----------AARL----- 6"
## [1] " "
## [1] "RQLDRAAAAVEPDVVVKRQEALAAA--------RLKMQEELNAQVEKHKEKLKQLEEEKR 112"
## [1] "-----AAAA-------------AAAQSVYAFSAR-------------------------- 22"
## [1] " "
## [1] "RQKIEMWDSMQEGKSYKGNAKKPQEEDSPGPSTSSVLKRKSDRKPLRGGGYNPLSGE--- 169"
## [1] "--------------------------------------------PLAGG-------EPVS 31"
## [1] " "
## [1] "------------------------GGG--------------------------------- 172"
## [1] "LGSLRGKENAKNEEILNSLKYVRPGGGFEPNFMLFEKCEVNGAGAHPLFAFLREALPAPS 91"
## [1] " "
## [1] "------------------------------------------------------------ 172"
## [1] "DDATALMTDPKLITWSPVCRNDVAWNFEKFLVGPDGVPLRRYSRRFQTIDIEPDIEALLS 151"
## [1] " "
## [1] "-----A 227"
## [1] "QGPSCA 211"
## [1] " "

These are two randomly chosen sequences, so the alignment should be pretty bad.

The score is negative, but on its own that doesn’t really mean a whole lot.

score(align_out)
## [1] -160.2561

pid gives us the percent identity, or the percent of how similar the sequences are to each other, how many identical matches are present between them.

pid(align_out)
## [1] 7.189542

Of course, pid can be calculated several ways. This could be an issue if you use the wrong type of PID, because the denominator is subject to change based on what PID you want to calculate. Each type of PID produces a different number.

pid(align_out,type = "PID1")
## [1] 7.189542
pid(align_out,type = "PID2")
## [1] 91.66667
pid(align_out,type = "PID3")
## [1] 14.01274
pid(align_out,type = "PID4")
## [1] 12.71676