QUESTION 1 I. Type of the experiment and reason : Randomized Complete Block Design because it has one nuisance factor as blocking factor. II. Blocking factor : experimental field III. Treatment factor : fertelizer IV. List all the treatments : Control, Absent, High
#import data
library(readr)
data <- read_csv("/Volumes/GoogleDrive/My Drive/NORATIKAH/EDA/Assessments/Lab Report/Lab Report 2/Lab Report 2 data.csv")
── Column specification ───────────────────────────────────────────────────────────────────────────────
cols(
Field = col_double(),
Fertilizer = col_character(),
Yields = col_double()
)
data
Treatment = as.factor(data$Fertilizer)
Block = as.factor(data$Field)
results = aov(Yields~Treatment+Block,data)
summary(results)
Df Sum Sq Mean Sq F value Pr(>F)
Treatment 2 11.606 5.803 29.145 1.02e-05 ***
Block 7 12.166 1.738 8.729 0.000339 ***
Residuals 14 2.787 0.199
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
\(H_{0}\): All population means are equal @ no treatments effect
\(H_{1}\): At least one of the population means is different @ there is treatment effects
\(p-value=0.0000\)
Since (\(p-value=0.0000\))\(<\)(\(\alpha=0.05\)), reject \(H_{0}\).
At \(\alpha=0.05\), At least one of the population means is different @ there is treatment effects
TukeyHSD(results)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = Yields ~ Treatment + Block, data = data)
$Treatment
diff lwr upr p adj
Control-Absent 1.2250 0.6410661 1.8089339 0.0002202
High-Absent 1.6375 1.0535661 2.2214339 0.0000104
High-Control 0.4125 -0.1714339 0.9964339 0.1902056
$Block
diff lwr upr p adj
2-1 -1.03333333 -2.3189419 0.25227522 0.1617626
3-1 -0.03333333 -1.3189419 1.25227522 1.0000000
4-1 0.13333333 -1.1522752 1.41894189 0.9999321
5-1 0.60000000 -0.6856086 1.88560855 0.7177024
6-1 -0.70000000 -1.9856086 0.58560855 0.5592509
7-1 -1.53333333 -2.8189419 -0.24772478 0.0147814
8-1 -1.26666667 -2.5522752 0.01894189 0.0547957
3-2 1.00000000 -0.2856086 2.28560855 0.1869296
4-2 1.16666667 -0.1189419 2.45227522 0.0882072
5-2 1.63333333 0.3477248 2.91894189 0.0090123
6-2 0.33333333 -0.9522752 1.61894189 0.9793776
7-2 -0.50000000 -1.7856086 0.78560855 0.8552781
8-2 -0.23333333 -1.5189419 1.05227522 0.9974342
4-3 0.16666667 -1.1189419 1.45227522 0.9997009
5-3 0.63333333 -0.6522752 1.91894189 0.6657032
6-3 -0.66666667 -1.9522752 0.61894189 0.6125196
7-3 -1.50000000 -2.7856086 -0.21439145 0.0174345
8-3 -1.23333333 -2.5189419 0.05227522 0.0643162
5-4 0.46666667 -0.8189419 1.75227522 0.8917015
6-4 -0.83333333 -2.1189419 0.45227522 0.3627445
7-4 -1.66666667 -2.9522752 -0.38105811 0.0076457
8-4 -1.40000000 -2.6856086 -0.11439145 0.0285772
6-5 -1.30000000 -2.5856086 -0.01439145 0.0466279
7-5 -2.13333333 -3.4189419 -0.84772478 0.0008154
8-5 -1.86666667 -3.1522752 -0.58105811 0.0028793
7-6 -0.83333333 -2.1189419 0.45227522 0.3627445
8-6 -0.56666667 -1.8522752 0.71894189 0.7673652
8-7 0.26666667 -1.0189419 1.55227522 0.9942330
plot(TukeyHSD(results))
The significant pair of treatments are Fertlizer Contro-Absent and High-Absent. The most significant treatment pairs is High-Absent.