library(car)
## Loading required package: carData
library(carData)
library(ggplot2)
color codes
getwd()
## [1] "/Users/maj.mobajer/Desktop/R/Rmd "
Simple Scatter plot
ggplot(mtcars, aes(x=wt, y=mpg)) +
geom_point(size=2,color="#CC99CC")+
#Add the regression line
geom_smooth(method=lm,color="gray",fill="#6666CC",alpha=0.15)+
labs(title = "Simple Scatter plot",
x="Car weight",y="Miles per gallon")+theme_bw()
## `geom_smooth()` using formula 'y ~ x'
Scatter plot with categorical third variable
mtcars$cyl <- as.factor(mtcars$cyl)
ggplot(mtcars, aes(x=wt, y=mpg, color=cyl)) +
geom_point() +
#Add regression lines
geom_smooth(method=lm, aes(fill=cyl),alpha=0.15)+
labs(title = "Scatter plot with categorical variable") +theme_bw()
## `geom_smooth()` using formula 'y ~ x'
#change colors
ggplot(mtcars, aes(x=wt, y=mpg, color=cyl)) +
geom_point() +
#Add regression lines
geom_smooth(method=lm, aes(fill=cyl),alpha=0.15)+
scale_color_manual(values = c("#33CCCC", "#FF99CC", "#9933FF"))+
scale_fill_manual(values =c("#33CCCC", "#FF99CC", "#9933FF"))+
labs(title = "Scatter plot with categorical variable")+theme_bw()
## `geom_smooth()` using formula 'y ~ x'
#Remove the confidence interval
ggplot(mtcars, aes(x=wt, y=mpg, color=cyl)) +
geom_point() +
geom_smooth(method=lm, se=FALSE,aes(fill=cyl),alpha=0.15)+
scale_color_manual(values = c("#33CCCC", "#FF99CC", "#9933FF"))+
scale_fill_manual(values =c("#33CCCC", "#FF99CC", "#9933FF"))+
labs(title = "Scatter plot with categorical variable") +theme_bw()
## `geom_smooth()` using formula 'y ~ x'
The different point shapes
#Extend the regression lines
ggplot(mtcars, aes(x=wt, y=mpg, color=cyl, shape=cyl)) +
geom_point() +
geom_smooth(method=lm, se=FALSE, fullrange=TRUE)+
labs(title = "Scatter plot with categorical variable") +theme_bw()
## `geom_smooth()` using formula 'y ~ x'
#change colors
ggplot(mtcars, aes(x=wt, y=mpg, color=cyl, shape=cyl)) +
geom_point() +
geom_smooth(method=lm, se=FALSE, fullrange=TRUE)+
scale_shape_manual(values=c(25, 16, 17))+
scale_color_manual(values=c("#33CCCC","#CC99CC","#9933FF"))+
labs(title = "Scatter plot with categorical variable")+theme_bw()
## `geom_smooth()` using formula 'y ~ x'
Scatter plot for each group
#Using facet_wrap()
ggplot(mtcars, aes(x=wt, y=mpg, color=cyl)) +
geom_point() + facet_wrap(~cyl)+
geom_smooth(method=lm, aes(fill=cyl),alpha=0.15)+
labs(title = "Scatter plot for each group")+theme_bw()
## `geom_smooth()` using formula 'y ~ x'
##change colors
ggplot(mtcars, aes(x=wt, y=mpg, color=cyl)) +
geom_point() +facet_wrap(~cyl)+
geom_smooth(method=lm, aes(fill=cyl),alpha=0.15)+
scale_color_manual(values = c("#33CCCC", "#FF99CC", "#9933FF"))+
scale_fill_manual(values =c("#33CCCC", "#FF99CC", "#9933FF"))+
labs(title = "Scatter plot for each group")+theme_bw()
## `geom_smooth()` using formula 'y ~ x'
Scatter plot With Numeric third variable
ggplot(mtcars, aes(x=wt, y=mpg, color=disp))+
geom_point(aes(color = disp), size = 2) +
scale_color_gradientn(colors = c("#33CCCC","#FF99CC", "#9933FF")) +
labs(title = "Scatter plot with Numeric third variable")+theme_bw()
The end