The goal of this exercise is to make you familiar with how to download data from Google Sheets and to briefly review some key concepts R functions and coding concepts.
We’ll do the following things
## Google sheets download package
# comment this out when you are done
# install.packages("googlesheets4")
library(googlesheets4)
# comp bio packages
library(seqinr)
library(rentrez)
library(compbio4all)
library(Biostrings)
## Loading required package: BiocGenerics
## Loading required package: parallel
##
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:parallel':
##
## clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
## clusterExport, clusterMap, parApply, parCapply, parLapply,
## parLapplyLB, parRapply, parSapply, parSapplyLB
## The following objects are masked from 'package:stats':
##
## IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
##
## anyDuplicated, append, as.data.frame, basename, cbind, colnames,
## dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
## grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
## order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
## rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
## union, unique, unsplit, which.max, which.min
## Loading required package: S4Vectors
## Loading required package: stats4
##
## Attaching package: 'S4Vectors'
## The following objects are masked from 'package:base':
##
## expand.grid, I, unname
## Loading required package: IRanges
##
## Attaching package: 'IRanges'
## The following object is masked from 'package:grDevices':
##
## windows
## Loading required package: XVector
## Loading required package: GenomeInfoDb
##
## Attaching package: 'Biostrings'
## The following object is masked from 'package:seqinr':
##
## translate
## The following object is masked from 'package:base':
##
## strsplit
THIS IS A GOOGLE DOC THAT CONTAINS DATA. WE ARE GOING TO DOWNLOAD ITs CONTENTS HERE.
spreadsheet_sp <- "https://docs.google.com/spreadsheets/d/1spC_ZA3_cVuvU3e_Jfcj2nEIfzp-vaP7SA5f-qwQ1pg/edit?usp=sharing"
WHAT DOES THIS DO? THIS IS MAKING SURE THAT THE PACKAGE DOESN’T CHECK USER ACCESS CREDENTIALS OR AUTHORIZATION. ALL WE WANT IS THE DATA IN THE DOCUMENT
# be sure to run this!
googlesheets4::gs4_deauth() # <====== MUST RUN THIS
Third, we download our data.
“Error in curl::curl_fetch_memory(url, handle = handle) : Error in the HTTP2 framing layer”
If that happens, just re-run the code.
# I include this again in case you missed is the first time : )
googlesheets4::gs4_deauth()
# download
## NOTE: if you get an error, just run the code again
refseq_column <- read_sheet(ss = spreadsheet_sp, # the url
sheet = "RefSeq_prot", # the name of the worksheet
range = "selenoprot!H1:H364",
col_names = TRUE,
na = "", # fill in empty spaces "" w/NA
trim_ws = TRUE)
## v Reading from "human_gene_table".
## v Range ''selenoprot'!H1:H364'.
## NOTE: if you get an error, just run the code again
# for reasons we won't get into I'm going to do this
protein_refseq <- refseq_column$RefSeq_prot
WHAT’S THIS? THIS IS CODE THAT PRINTS OUT THE FIRST 10 SEQUENCES FROM THE DOCUMENT
protein_refseq[1:10]
## [1] "NP_000783.2" "NP_998758.1" "NP_001034804.1" "NP_001034805.1"
## [5] "NP_001311245.1" NA NA "NP_054644.1"
## [9] "NP_001353425.1" "NP_000784.3"
WHAT’S THIS? THIS IS EXTRACTING THE RELEVANT INFO FROM ANOTHER COLUMN. IT IS SELECTING THE GENE SECTION OF THE SHEET AND HONING IN ON A SPECIFIC CELL RANGE.
# download
## NOTE: if you get an error, just run the code again
gene_name_column <- read_sheet(ss = spreadsheet_sp, # the url
sheet = "gene", # the name of the worksheet
range = "selenoprot!A1:A364",
col_names = TRUE,
na = "", # fill in empty spaces "" w/NA
trim_ws = TRUE)
## v Reading from "human_gene_table".
## v Range ''selenoprot'!A1:A364'.
## NOTE: if you get an error, just run the code again
# for reasons we won't get into I'm going to do this
gene <- gene_name_column$gene
WHAT’S THIS DOING THIS CHUNK IS LOOKING AT THE DATA IN MORE DETAIL IN REGARDS TO R, MAKING SURE EVERYTHING IS AS IT SHOULD BE
is(protein_refseq)
## [1] "character" "vector"
## [3] "data.frameRowLabels" "SuperClassMethod"
## [5] "character_OR_connection" "character_OR_NULL"
## [7] "atomic" "EnumerationValue"
## [9] "vector_OR_Vector" "vector_OR_factor"
class(protein_refseq)
## [1] "character"
length(protein_refseq)
## [1] 363
protein_refseq[1:10]
## [1] "NP_000783.2" "NP_998758.1" "NP_001034804.1" "NP_001034805.1"
## [5] "NP_001311245.1" NA NA "NP_054644.1"
## [9] "NP_001353425.1" "NP_000784.3"
WHAT’S THIS DOING? CHECKING FOR THE PRESENCE OF MISSING VALUES IN THE SHEET, ALSO CALLED NAs
is.na(protein_refseq)
## [1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE TRUE
## [13] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE
## [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE
## [37] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [49] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
## [73] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [109] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [121] TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
## [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [145] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [169] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [193] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE
## [205] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [217] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
## [253] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [265] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [277] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
## [289] TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [301] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [313] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [325] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
## [337] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [349] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [361] FALSE FALSE FALSE
WHAT’S THIS DOING? COMPARING THE AMOUNT OF MISSING VALUES TO PRESENT VALUES
table(is.na(protein_refseq))
##
## FALSE TRUE
## 334 29
WHAT’S THIS DOING? ANOTHER METHOD TO COUNT HOW MANY NAs WE HAVE IN THE SHEET
# ...
temp <- is.na(protein_refseq)
# ....
protein_refseq[temp]
## [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [26] NA NA NA NA
temp2 <- protein_refseq[temp]
# ...
length(temp2)
## [1] 29
WHAT’S THIS DOING? WNY? THIS IS MAKING THE DATA FRAME AND GIVING IT AN OBJECT NAME
seleno_df <- data.frame(gene = gene,
protein_refseq = protein_refseq)
WHAT’S THIS DOING? SEEING THE CONTENTS OF THE DATAFRAME WE JUST MADE
summary(seleno_df)
## gene protein_refseq
## Length:363 Length:363
## Class :character Class :character
## Mode :character Mode :character
head(seleno_df)
## gene protein_refseq
## 1 DIO1 NP_000783.2
## 2 DIO1 NP_998758.1
## 3 DIO1 NP_001034804.1
## 4 DIO1 NP_001034805.1
## 5 DIO1 NP_001311245.1
## 6 DIO1 <NA>
WHAT’S THIS DOING? REMOVING THE NAs AND MAKING SURE THEY ARE REMOVED BY CHECKING THE COUNT
# omit NAs
seleno_df_noNA <- na.omit(seleno_df)
# check length- should be shorter
dim(seleno_df)
## [1] 363 2
dim(seleno_df_noNA)
## [1] 334 2
The same gene can appear multiple times because multiple isoforms are listed.
head(seleno_df_noNA)
## gene protein_refseq
## 1 DIO1 NP_000783.2
## 2 DIO1 NP_998758.1
## 3 DIO1 NP_001034804.1
## 4 DIO1 NP_001034805.1
## 5 DIO1 NP_001311245.1
## 8 DIO2 NP_054644.1
WHAT’S THIS DOING? FILTERING OUT THE UNIQUE GENES THAT APPEAR IN THE SHEET
genes_unique <- unique(seleno_df_noNA$gene)
length(genes_unique)
## [1] 37
genes_unique
## [1] "DIO1" "DIO2" "DIO3" "GPX1" "GPX2" "GPX3"
## [7] "GPX4" "GPX6" "MSRB1" "SELENOF" "SELENOH" "SELENOI"
## [13] "SELENOK" "SELENOM" "SELENON" "SELENOO" "SELENOP" "SELENOS"
## [19] "SELENOT" "SELENOV" "SELENOW" "SEPHS2" "TXNRD1" "TXNRD2"
## [25] "TXNRD3" "SELENOP1" "SELENOP2" "SELENOU" "SELENOW1" "SELENOW2"
## [31] "SELENOE" "SELENOJ" "SELENOL" "SELENOO1" "SELENOO2" "SELENOT1"
## [37] "SELENOT2"
unique() just gives us the unique elements. A related function, duplicated(), gives us the location of duplicated elements in the vector. FALSE means “not duplicated yet” or “first instance so far”.
i.dups <- duplicated(seleno_df_noNA$gene)
We can remove the duplicates using a form of reverse indexing where the “!” means “not”. (You don’t need to know this for the exam)
seleno_df_noNA[!i.dups, ]
## gene protein_refseq
## 1 DIO1 NP_000783.2
## 8 DIO2 NP_054644.1
## 14 DIO3 NP_001353.4
## 15 GPX1 NP_000572.2
## 20 GPX2 NP_002074.2
## 24 GPX3 NP_002075.2
## 26 GPX4 NP_002076.2
## 29 GPX6 NP_874360.1
## 30 MSRB1 NP_057416.1
## 31 SELENOF NP_004252.2
## 35 SELENOH NP_734467.1
## 37 SELENOI NP_277040.1
## 39 SELENOK NP_067060.2
## 40 SELENOM NP_536355.1
## 41 SELENON NP_996809.1
## 43 SELENOO NP_113642.1
## 44 SELENOP NP_005401.3
## 47 SELENOS NP_060915.2
## 49 SELENOT NP_057359.2
## 50 SELENOV NP_874363.1
## 53 SELENOW NP_003000.1
## 54 SEPHS2 NP_036380.2
## 55 TXNRD1 NP_877393.1
## 62 TXNRD2 NP_006431.2
## 69 TXNRD3 NP_443115.1
## 232 SELENOP1 NP_001026780.2
## 233 SELENOP2 NP_001335698.1
## 236 SELENOU NP_001180447.1
## 268 SELENOW1 NP_001291715.2
## 269 SELENOW2 NP_001341647.1
## 334 SELENOE NP_001182713.2
## 338 SELENOJ NP_001180398.1
## 340 SELENOL NP_001177311.1
## 343 SELENOO1 NP_001038336.2
## 344 SELENOO2 NP_001335014.1
## 348 SELENOT1 NP_840075.2
## 350 SELENOT2 NP_001091957.2
Make a dataframe of non-duplicated genes
seleno_df_noDups <- seleno_df_noNA[!i.dups, ]
dim(seleno_df_noDups)
## [1] 37 2
Let’s select 2 random sequences to work with. We’ll use WHICH FUNCTION? to select a random index number to get
First, lets make a vector that contains a unique number for each row of data
indices <- 1:nrow(seleno_df_noDups)
This would do the same thing
# with dim
indices <- 1:dim(seleno_df_noDups)[1]
# with length
indices <- 1:length(seleno_df_noDups$gene)
or hard-coded
indices <- 1:37
We can then use SAMPLE to select 2 random numbers from this vector.
For x = we’ll use our vector of indices (1 to 37). For size we’ll use 2, since we want to pull out just 2 numbers. For replace we’ll use FALSE since we don’t want to be ale to select the same number twice.
i.random.genes <- sample(x = indices,
size = 2,
replace = FALSE)
Hard coded this would be
i.random.genes <- sample(x = c(1:37),
size = 2,
replace = FALSE)
This gives me TWO indices values.
i.random.genes
## [1] 31 9
I can now use these index values to pull out TWO rows of data
seleno_df_noNA[i.random.genes, ]
## gene protein_refseq
## 41 SELENON NP_996809.1
## 11 DIO2 NP_001311391.2
Hard coded, this would be something like this for whichever genes happen to have been selected
seleno_df_noNA[c(37,15), ]
## gene protein_refseq
## 47 SELENOS NP_060915.2
## 19 GPX1 NP_001316384.1
I will now… DOWNLOAD FASTA FILES
rentrez::entrez_fetch(id = "NP_060915.2",
db = "protein",
rettype = "fasta")
## [1] ">NP_060915.2 selenoprotein S isoform 1 [Homo sapiens]\nMERQEESLSARPALETEGLRFLHTTVGSLLATYGWYIVFSCILLYVVFQKLSARLRALRQRQLDRAAAAV\nEPDVVVKRQEALAAARLKMQEELNAQVEKHKEKLKQLEEEKRRQKIEMWDSMQEGKSYKGNAKKPQEEDS\nPGPSTSSVLKRKSDRKPLRGGGYNPLSGEGGGACSWRPGRRGPSSGGUG\n\n"
rentrez::entrez_fetch(id = "NP_001316384.1",
db = "protein",
rettype = "fasta")
## [1] ">NP_001316384.1 glutathione peroxidase 1 isoform 5 [Homo sapiens]\nMCAARLAAAAAAAQSVYAFSARPLAGGEPVSLGSLRGKENAKNEEILNSLKYVRPGGGFEPNFMLFEKCE\nVNGAGAHPLFAFLREALPAPSDDATALMTDPKLITWSPVCRNDVAWNFEKFLVGPDGVPLRRYSRRFQTI\nDIEPDIEALLSQGPSCA\n\n"
WHAT"S THIS DOING? SAVING THOSE FASTA FILES INTO VECTORS
prot1 <- rentrez::entrez_fetch(id = "NP_060915.2",
db = "protein",
rettype = "fasta")
prot2 <- rentrez::entrez_fetch(id = "NP_001316384.1",
db = "protein",
rettype = "fasta")
I can put them into a LIST like this
# make the LIST?
seleno_thingy <- vector("list", 1)
# add the first fasta
seleno_thingy[[1]] <- prot1
# See the result
seleno_thingy
## [[1]]
## [1] ">NP_060915.2 selenoprotein S isoform 1 [Homo sapiens]\nMERQEESLSARPALETEGLRFLHTTVGSLLATYGWYIVFSCILLYVVFQKLSARLRALRQRQLDRAAAAV\nEPDVVVKRQEALAAARLKMQEELNAQVEKHKEKLKQLEEEKRRQKIEMWDSMQEGKSYKGNAKKPQEEDS\nPGPSTSSVLKRKSDRKPLRGGGYNPLSGEGGGACSWRPGRRGPSSGGUG\n\n"
# add the first fasta
seleno_thingy[[2]] <- prot2
# see the result
seleno_thingy
## [[1]]
## [1] ">NP_060915.2 selenoprotein S isoform 1 [Homo sapiens]\nMERQEESLSARPALETEGLRFLHTTVGSLLATYGWYIVFSCILLYVVFQKLSARLRALRQRQLDRAAAAV\nEPDVVVKRQEALAAARLKMQEELNAQVEKHKEKLKQLEEEKRRQKIEMWDSMQEGKSYKGNAKKPQEEDS\nPGPSTSSVLKRKSDRKPLRGGGYNPLSGEGGGACSWRPGRRGPSSGGUG\n\n"
##
## [[2]]
## [1] ">NP_001316384.1 glutathione peroxidase 1 isoform 5 [Homo sapiens]\nMCAARLAAAAAAAQSVYAFSARPLAGGEPVSLGSLRGKENAKNEEILNSLKYVRPGGGFEPNFMLFEKCE\nVNGAGAHPLFAFLREALPAPSDDATALMTDPKLITWSPVCRNDVAWNFEKFLVGPDGVPLRRYSRRFQTI\nDIEPDIEALLSQGPSCA\n\n"
# WHAT DOES THIS DO? NAMING THE LISTS
names(seleno_thingy) <- c("prot1", "prot2")
#Output
seleno_thingy
## $prot1
## [1] ">NP_060915.2 selenoprotein S isoform 1 [Homo sapiens]\nMERQEESLSARPALETEGLRFLHTTVGSLLATYGWYIVFSCILLYVVFQKLSARLRALRQRQLDRAAAAV\nEPDVVVKRQEALAAARLKMQEELNAQVEKHKEKLKQLEEEKRRQKIEMWDSMQEGKSYKGNAKKPQEEDS\nPGPSTSSVLKRKSDRKPLRGGGYNPLSGEGGGACSWRPGRRGPSSGGUG\n\n"
##
## $prot2
## [1] ">NP_001316384.1 glutathione peroxidase 1 isoform 5 [Homo sapiens]\nMCAARLAAAAAAAQSVYAFSARPLAGGEPVSLGSLRGKENAKNEEILNSLKYVRPGGGFEPNFMLFEKCE\nVNGAGAHPLFAFLREALPAPSDDATALMTDPKLITWSPVCRNDVAWNFEKFLVGPDGVPLRRYSRRFQTI\nDIEPDIEALLSQGPSCA\n\n"
Elements of the list are accessed like this
seleno_thingy[[1]]
## [1] ">NP_060915.2 selenoprotein S isoform 1 [Homo sapiens]\nMERQEESLSARPALETEGLRFLHTTVGSLLATYGWYIVFSCILLYVVFQKLSARLRALRQRQLDRAAAAV\nEPDVVVKRQEALAAARLKMQEELNAQVEKHKEKLKQLEEEKRRQKIEMWDSMQEGKSYKGNAKKPQEEDS\nPGPSTSSVLKRKSDRKPLRGGGYNPLSGEGGGACSWRPGRRGPSSGGUG\n\n"
I’ll clean them with fasta_cleaner()
# first, make a copy of the list for storing the clean data
## I'm just going to copy over the old data
seleno_thingy_clean <- seleno_thingy
# HOW TO MAKE THIS MORE COMPACT?
for(i in 1:length(seleno_thingy_clean)){
clean_fasta_temp <- compbio4all::fasta_cleaner(seleno_thingy[[i]],
parse = T)
seleno_thingy_clean[[i]] <- clean_fasta_temp
}
Now the data looks like this HOW WOULD YOU DESCRIBE THIS? LIST IS MADE OF ELEMENTS THAT ARE ALL ONE LETTER VECTORS
seleno_thingy_clean
## $prot1
## [1] "M" "E" "R" "Q" "E" "E" "S" "L" "S" "A" "R" "P" "A" "L" "E" "T" "E" "G"
## [19] "L" "R" "F" "L" "H" "T" "T" "V" "G" "S" "L" "L" "A" "T" "Y" "G" "W" "Y"
## [37] "I" "V" "F" "S" "C" "I" "L" "L" "Y" "V" "V" "F" "Q" "K" "L" "S" "A" "R"
## [55] "L" "R" "A" "L" "R" "Q" "R" "Q" "L" "D" "R" "A" "A" "A" "A" "V" "E" "P"
## [73] "D" "V" "V" "V" "K" "R" "Q" "E" "A" "L" "A" "A" "A" "R" "L" "K" "M" "Q"
## [91] "E" "E" "L" "N" "A" "Q" "V" "E" "K" "H" "K" "E" "K" "L" "K" "Q" "L" "E"
## [109] "E" "E" "K" "R" "R" "Q" "K" "I" "E" "M" "W" "D" "S" "M" "Q" "E" "G" "K"
## [127] "S" "Y" "K" "G" "N" "A" "K" "K" "P" "Q" "E" "E" "D" "S" "P" "G" "P" "S"
## [145] "T" "S" "S" "V" "L" "K" "R" "K" "S" "D" "R" "K" "P" "L" "R" "G" "G" "G"
## [163] "Y" "N" "P" "L" "S" "G" "E" "G" "G" "G" "A" "C" "S" "W" "R" "P" "G" "R"
## [181] "R" "G" "P" "S" "S" "G" "G" "U" "G"
##
## $prot2
## [1] "M" "C" "A" "A" "R" "L" "A" "A" "A" "A" "A" "A" "A" "Q" "S" "V" "Y" "A"
## [19] "F" "S" "A" "R" "P" "L" "A" "G" "G" "E" "P" "V" "S" "L" "G" "S" "L" "R"
## [37] "G" "K" "E" "N" "A" "K" "N" "E" "E" "I" "L" "N" "S" "L" "K" "Y" "V" "R"
## [55] "P" "G" "G" "G" "F" "E" "P" "N" "F" "M" "L" "F" "E" "K" "C" "E" "V" "N"
## [73] "G" "A" "G" "A" "H" "P" "L" "F" "A" "F" "L" "R" "E" "A" "L" "P" "A" "P"
## [91] "S" "D" "D" "A" "T" "A" "L" "M" "T" "D" "P" "K" "L" "I" "T" "W" "S" "P"
## [109] "V" "C" "R" "N" "D" "V" "A" "W" "N" "F" "E" "K" "F" "L" "V" "G" "P" "D"
## [127] "G" "V" "P" "L" "R" "R" "Y" "S" "R" "R" "F" "Q" "T" "I" "D" "I" "E" "P"
## [145] "D" "I" "E" "A" "L" "L" "S" "Q" "G" "P" "S" "C" "A"
HOW WOULD YOU DESCRIBE THIS?
class(seleno_thingy_clean[[1]])
## [1] "character"
is(seleno_thingy_clean[[1]])
## [1] "character" "vector"
## [3] "data.frameRowLabels" "SuperClassMethod"
## [5] "character_OR_connection" "character_OR_NULL"
## [7] "atomic" "EnumerationValue"
## [9] "vector_OR_Vector" "vector_OR_factor"
is.vector(seleno_thingy_clean[[1]])
## [1] TRUE
For old-times sake we can make a dotplot.
Now for a dotplot
WHAT AM I DOING HERE? TAKING THE ELEMENTS OF THE LIST AND MAKING THEM THEIR OWN OBJECTS
prot1_vector <- seleno_thingy_clean[[1]]
prot2_vector <- seleno_thingy_clean[[2]]
We can dotplot like this
seqinr::dotPlot(prot1_vector,
prot1_vector)
WHAT DID I DO DIFFERENTLY HERE? ACCESSING THE LIST DIRECTLY TO MAKE DATA FOR THE PLOT
seqinr::dotPlot(seleno_thingy_clean[[1]],
seleno_thingy_clean[[2]])
dotPlot likes things in a single vector, but pairwiseAlignment like a single string of characters, so as always we have to process the data.
WHAT AM I DOING HERE? TAKING EVERYTHING FROM THE LIST AND PUTTING IT TOGETHER TO MAKE IT INTO ONE
WHAT DOES "" MEAN? MAKING THE STRING INTO ONE CONTINOUS STRING WITH NO GAPS
prot1_str <- paste(seleno_thingy_clean[[1]],sep = "", collapse = "")
prot2_str <- paste(seleno_thingy_clean[[2]],sep = "", collapse = "")
So now things look like this HOW WOULD YOU DESCRIBE THIS? EVERYTHING IS PART OF ONE VECTOR OF LENGTH OF 1
prot1_str
## [1] "MERQEESLSARPALETEGLRFLHTTVGSLLATYGWYIVFSCILLYVVFQKLSARLRALRQRQLDRAAAAVEPDVVVKRQEALAAARLKMQEELNAQVEKHKEKLKQLEEEKRRQKIEMWDSMQEGKSYKGNAKKPQEEDSPGPSTSSVLKRKSDRKPLRGGGYNPLSGEGGGACSWRPGRRGPSSGGUG"
Protein alignments need a amino acid transition matrix, and we need to use data() to bring those up into active memory (VERY IMPORTANT STEP!)
data(BLOSUM50)
The alignment
align_out <- Biostrings::pairwiseAlignment(pattern = prot1_str,
subject = prot2_str,
type = "global",
gapOpening = -9.5,
gapExtension = -0.5)
What is this? THE OUTPUT OF OUR ALIGNMENT; TELLS US THE SCORE AS WELL
align_out
## Global PairwiseAlignmentsSingleSubject (1 of 1)
## pattern: MERQEESLSARPALETEGLRFLHTTVGSLLATYG...-----------------ACSWRPGRRGPSSGGUG
## subject: M---------------------------------...IDIEPDIEALLSQGPSCA----------------
## score: -160.2561
WHAT IS THIS? HOW IS IT DIFFERNT FROM THE LAST CHUNK? THIS IS THE ALIGNMENT BUT WITH THE FULL SEQUENCE FOR BOTH GENES
compbio4all::print_pairwise_alignment(align_out)
## [1] "MERQEESLSARPALETEGLRFLHTTVGSLLATYGWYIVFSCILLYVVFQKLSARLRALRQ 60"
## [1] "M---------------------------------------C----------AARL----- 6"
## [1] " "
## [1] "RQLDRAAAAVEPDVVVKRQEALAAA--------RLKMQEELNAQVEKHKEKLKQLEEEKR 112"
## [1] "-----AAAA-------------AAAQSVYAFSAR-------------------------- 22"
## [1] " "
## [1] "RQKIEMWDSMQEGKSYKGNAKKPQEEDSPGPSTSSVLKRKSDRKPLRGGGYNPLSGE--- 169"
## [1] "--------------------------------------------PLAGG-------EPVS 31"
## [1] " "
## [1] "------------------------GGG--------------------------------- 172"
## [1] "LGSLRGKENAKNEEILNSLKYVRPGGGFEPNFMLFEKCEVNGAGAHPLFAFLREALPAPS 91"
## [1] " "
## [1] "------------------------------------------------------------ 172"
## [1] "DDATALMTDPKLITWSPVCRNDVAWNFEKFLVGPDGVPLRRYSRRFQTIDIEPDIEALLS 151"
## [1] " "
## [1] "-----A 227"
## [1] "QGPSCA 211"
## [1] " "
These are two randomly chosen sequences, so the alignment should be pretty WEAK
The score is negative, but on its own that MEANS THE SEQUENCES ARE NOT VERY SIMILAR
score(align_out)
## [1] -160.2561
pid gives us THE PERCENT OF IDENTICAL AMINO ACIDS BETWEEN THE SEQUENCES
pid(align_out)
## [1] 7.189542
Of course, pid can be calculated several ways (WHY IS THIS AN ISSUE / POSSIBLE?) THIS IS A SLIGHT ISSUE BECAUSE ONE CAN BE MISLED BY THESE VALUES SINCE THEY ARE CALCULATED IN DIFFERENT WAYS
pid(align_out,type = "PID1")
## [1] 7.189542
pid(align_out,type = "PID2")
## [1] 91.66667
pid(align_out,type = "PID3")
## [1] 14.01274
pid(align_out,type = "PID4")
## [1] 12.71676