The goal of this exercise is to make you familiar with how to download data from Google Sheets and to briefly review some key concepts R functions and coding concepts.

We’ll do the following things

Packages

## Google sheets download package

# install.packages("googlesheets4")
library(googlesheets4)

# comp bio packages
library(seqinr)
library(rentrez)
library(compbio4all)
library(Biostrings)
## Loading required package: BiocGenerics
## Loading required package: parallel
## 
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:parallel':
## 
##     clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
##     clusterExport, clusterMap, parApply, parCapply, parLapply,
##     parLapplyLB, parRapply, parSapply, parSapplyLB
## The following objects are masked from 'package:stats':
## 
##     IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
## 
##     anyDuplicated, append, as.data.frame, basename, cbind, colnames,
##     dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
##     grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
##     order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
##     rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
##     union, unique, unsplit, which.max, which.min
## Loading required package: S4Vectors
## Loading required package: stats4
## 
## Attaching package: 'S4Vectors'
## The following objects are masked from 'package:base':
## 
##     expand.grid, I, unname
## Loading required package: IRanges
## Loading required package: XVector
## Loading required package: GenomeInfoDb
## 
## Attaching package: 'Biostrings'
## The following object is masked from 'package:seqinr':
## 
##     translate
## The following object is masked from 'package:base':
## 
##     strsplit

Download data

web address (URL) for the spreadsheet with the data

spreadsheet_sp <- "https://docs.google.com/spreadsheets/d/1spC_ZA3_cVuvU3e_Jfcj2nEIfzp-vaP7SA5f-qwQ1pg/edit?usp=sharing" 

makes sure we tell the package we aren’t interested in checking user access credentials / authorization

# be sure to run this!
googlesheets4::gs4_deauth()   # <====== MUST RUN THIS

Third, we download our data.

NOTE!: sometimes Google Sheets or the function gets cranky and throws this error:

“Error in curl::curl_fetch_memory(url, handle = handle) : Error in the HTTP2 framing layer”

If that happens, just re-run the code.

# I include this again in case you missed is the first time : )
googlesheets4::gs4_deauth()  

# download
## NOTE: if you get an error, just run the code again
refseq_column <- read_sheet(ss = spreadsheet_sp, # the url
           sheet = "RefSeq_prot",                # the name of the worksheet
           range = "selenoprot!H1:H364",
           col_names = TRUE,
           na = "",                              # fill in empty spaces "" w/NA
           trim_ws = TRUE)
## ✓ Reading from "human_gene_table".
## ✓ Range ''selenoprot'!H1:H364'.
## NOTE: if you get an error, just run the code again

# for reasons we won't get into I'm going to do this
protein_refseq <- refseq_column$RefSeq_prot

snapshot of the results

protein_refseq[1:10]
##  [1] "NP_000783.2"    "NP_998758.1"    "NP_001034804.1" "NP_001034805.1"
##  [5] "NP_001311245.1" NA               NA               "NP_054644.1"   
##  [9] "NP_001353425.1" "NP_000784.3"

another column of results

# download
## NOTE: if you get an error, just run the code again
gene_name_column <- read_sheet(ss = spreadsheet_sp, # the url
           sheet = "gene",                # the name of the worksheet
           range = "selenoprot!A1:A364",
           col_names = TRUE,
           na = "",                              # fill in empty spaces "" w/NA
           trim_ws = TRUE)
## ✓ Reading from "human_gene_table".
## ✓ Range ''selenoprot'!A1:A364'.
## NOTE: if you get an error, just run the code again

# for reasons we won't get into I'm going to do this
gene <- gene_name_column$gene

Check Data

downloaded a vector of character data

is(protein_refseq)
##  [1] "character"               "vector"                 
##  [3] "data.frameRowLabels"     "SuperClassMethod"       
##  [5] "character_OR_connection" "character_OR_NULL"      
##  [7] "atomic"                  "EnumerationValue"       
##  [9] "vector_OR_Vector"        "vector_OR_factor"
class(protein_refseq)
## [1] "character"
length(protein_refseq)
## [1] 363
protein_refseq[1:10]
##  [1] "NP_000783.2"    "NP_998758.1"    "NP_001034804.1" "NP_001034805.1"
##  [5] "NP_001311245.1" NA               NA               "NP_054644.1"   
##  [9] "NP_001353425.1" "NP_000784.3"

checks for the presence of NAs using

is.na(protein_refseq)
##   [1] FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE
##  [13]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE
##  [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE
##  [37] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [49] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [73]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [109] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [121]  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
## [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [145] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
## [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [169] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [193] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE
## [205] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [217] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE
## [253] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [265] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [277] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
## [289]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [301] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [313] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [325] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
## [337] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [349] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [361] FALSE FALSE FALSE

counting them up a couple different ways

table(is.na(protein_refseq))
## 
## FALSE  TRUE 
##   334    29

counts them up in a different way

# ...
temp <- is.na(protein_refseq)

# ....
protein_refseq[temp]
##  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [26] NA NA NA NA
temp2 <- protein_refseq[temp]

# ...
length(temp2)
## [1] 29

Make a Dataframe

tores data tables

seleno_df <- data.frame(gene = gene,
                        protein_refseq = protein_refseq)

WHAT’S THIS DOING? makes list of vectors

summary(seleno_df)
##      gene           protein_refseq    
##  Length:363         Length:363        
##  Class :character   Class :character  
##  Mode  :character   Mode  :character
head(seleno_df)
##   gene protein_refseq
## 1 DIO1    NP_000783.2
## 2 DIO1    NP_998758.1
## 3 DIO1 NP_001034804.1
## 4 DIO1 NP_001034805.1
## 5 DIO1 NP_001311245.1
## 6 DIO1           <NA>

Remove NAs

quickly yanks out all of the NAs

# omit NAs
seleno_df_noNA <- na.omit(seleno_df)

# check length- should be shorter
dim(seleno_df)
## [1] 363   2
dim(seleno_df_noNA)
## [1] 334   2

Select just 1 isoform

The same gene can appear multiple times because multiple isoforms are listed.

head(seleno_df_noNA)
##   gene protein_refseq
## 1 DIO1    NP_000783.2
## 2 DIO1    NP_998758.1
## 3 DIO1 NP_001034804.1
## 4 DIO1 NP_001034805.1
## 5 DIO1 NP_001311245.1
## 8 DIO2    NP_054644.1

selects just one row for each gene

genes_unique <- unique(seleno_df_noNA$gene)
length(genes_unique)
## [1] 37
genes_unique
##  [1] "DIO1"     "DIO2"     "DIO3"     "GPX1"     "GPX2"     "GPX3"    
##  [7] "GPX4"     "GPX6"     "MSRB1"    "SELENOF"  "SELENOH"  "SELENOI" 
## [13] "SELENOK"  "SELENOM"  "SELENON"  "SELENOO"  "SELENOP"  "SELENOS" 
## [19] "SELENOT"  "SELENOV"  "SELENOW"  "SEPHS2"   "TXNRD1"   "TXNRD2"  
## [25] "TXNRD3"   "SELENOP1" "SELENOP2" "SELENOU"  "SELENOW1" "SELENOW2"
## [31] "SELENOE"  "SELENOJ"  "SELENOL"  "SELENOO1" "SELENOO2" "SELENOT1"
## [37] "SELENOT2"

unique() just gives us the unique elements. A related function, duplicated(), gives us the location of duplicated elements in the vector. FALSE means “not duplicated yet” or “first instance so far”.

i.dups <- duplicated(seleno_df_noNA$gene)

We can remove the duplicates using a form of reverse indexing where the “!” means “not”. (You don’t need to know this for the exam)

seleno_df_noNA[!i.dups, ]
##         gene protein_refseq
## 1       DIO1    NP_000783.2
## 8       DIO2    NP_054644.1
## 14      DIO3    NP_001353.4
## 15      GPX1    NP_000572.2
## 20      GPX2    NP_002074.2
## 24      GPX3    NP_002075.2
## 26      GPX4    NP_002076.2
## 29      GPX6    NP_874360.1
## 30     MSRB1    NP_057416.1
## 31   SELENOF    NP_004252.2
## 35   SELENOH    NP_734467.1
## 37   SELENOI    NP_277040.1
## 39   SELENOK    NP_067060.2
## 40   SELENOM    NP_536355.1
## 41   SELENON    NP_996809.1
## 43   SELENOO    NP_113642.1
## 44   SELENOP    NP_005401.3
## 47   SELENOS    NP_060915.2
## 49   SELENOT    NP_057359.2
## 50   SELENOV    NP_874363.1
## 53   SELENOW    NP_003000.1
## 54    SEPHS2    NP_036380.2
## 55    TXNRD1    NP_877393.1
## 62    TXNRD2    NP_006431.2
## 69    TXNRD3    NP_443115.1
## 232 SELENOP1 NP_001026780.2
## 233 SELENOP2 NP_001335698.1
## 236  SELENOU NP_001180447.1
## 268 SELENOW1 NP_001291715.2
## 269 SELENOW2 NP_001341647.1
## 334  SELENOE NP_001182713.2
## 338  SELENOJ NP_001180398.1
## 340  SELENOL NP_001177311.1
## 343 SELENOO1 NP_001038336.2
## 344 SELENOO2 NP_001335014.1
## 348 SELENOT1    NP_840075.2
## 350 SELENOT2 NP_001091957.2

Make a dataframe of non-duplicated genes

seleno_df_noDups <- seleno_df_noNA[!i.dups, ]
dim(seleno_df_noDups)
## [1] 37  2

Select 2 random sequences

Let’s select 2 random sequences to work with. We’ll use sample() to select a random index number to get

First, lets make a vector that contains a unique number for each row of data

indices <- 1:nrow(seleno_df_noDups)

This would do the same thing

# with dim
indices <- 1:dim(seleno_df_noDups)[1]

# with length
indices <- 1:length(seleno_df_noDups$gene)

or hard-coded

indices <- 1:37

We can then use sample() to select 2 random numbers from this vector.

For x = we’ll use our vector of indices (1 to 37). For size we’ll use 2, since we want to pull out just 2 numbers. For replace we’ll use WHAT? since we don’t want to be ale to select the same number twice.

i.random.genes <- sample(x = indices,
                         size = 2,
                         replace = FALSE)

Hard coded this would be

i.random.genes <- sample(x = c(1:37),
                         size = 2,
                         replace = FALSE)

This gives me two indices values.

i.random.genes
## [1] 22 21

I can now use these index values to pull out two rows of data

seleno_df_noNA[i.random.genes, ]
##    gene protein_refseq
## 29 GPX6    NP_874360.1
## 28 GPX4 NP_001034937.1

Hard coded, this would be something like this for whichever genes happen to have been selected

seleno_df_noNA[c(37,15), ]
##       gene protein_refseq
## 47 SELENOS    NP_060915.2
## 19    GPX1 NP_001316384.1

Downloading genes

I will now download the two FASTA files.

rentrez::entrez_fetch(id = "NP_060915.2",
                      db = "protein",
                      rettype = "fasta")
## [1] ">NP_060915.2 selenoprotein S isoform 1 [Homo sapiens]\nMERQEESLSARPALETEGLRFLHTTVGSLLATYGWYIVFSCILLYVVFQKLSARLRALRQRQLDRAAAAV\nEPDVVVKRQEALAAARLKMQEELNAQVEKHKEKLKQLEEEKRRQKIEMWDSMQEGKSYKGNAKKPQEEDS\nPGPSTSSVLKRKSDRKPLRGGGYNPLSGEGGGACSWRPGRRGPSSGGUG\n\n"
rentrez::entrez_fetch(id = "NP_001316384.1",
                      db = "protein",
                      rettype = "fasta")
## [1] ">NP_001316384.1 glutathione peroxidase 1 isoform 5 [Homo sapiens]\nMCAARLAAAAAAAQSVYAFSARPLAGGEPVSLGSLRGKENAKNEEILNSLKYVRPGGGFEPNFMLFEKCE\nVNGAGAHPLFAFLREALPAPSDDATALMTDPKLITWSPVCRNDVAWNFEKFLVGPDGVPLRRYSRRFQTI\nDIEPDIEALLSQGPSCA\n\n"

WHAT"S THIS DOING? saves this into vectors

prot1 <- rentrez::entrez_fetch(id = "NP_060915.2",
                      db = "protein",
                      rettype = "fasta")

prot2 <- rentrez::entrez_fetch(id = "NP_001316384.1",
                      db = "protein",
                      rettype = "fasta")

I can put them into a list like this

# make the list
seleno_thingy <- vector("list", 1)


# add the first fasta
seleno_thingy[[1]] <- prot1

# See the result
seleno_thingy
## [[1]]
## [1] ">NP_060915.2 selenoprotein S isoform 1 [Homo sapiens]\nMERQEESLSARPALETEGLRFLHTTVGSLLATYGWYIVFSCILLYVVFQKLSARLRALRQRQLDRAAAAV\nEPDVVVKRQEALAAARLKMQEELNAQVEKHKEKLKQLEEEKRRQKIEMWDSMQEGKSYKGNAKKPQEEDS\nPGPSTSSVLKRKSDRKPLRGGGYNPLSGEGGGACSWRPGRRGPSSGGUG\n\n"
# add the first fasta
seleno_thingy[[2]] <- prot2

# see the result
seleno_thingy
## [[1]]
## [1] ">NP_060915.2 selenoprotein S isoform 1 [Homo sapiens]\nMERQEESLSARPALETEGLRFLHTTVGSLLATYGWYIVFSCILLYVVFQKLSARLRALRQRQLDRAAAAV\nEPDVVVKRQEALAAARLKMQEELNAQVEKHKEKLKQLEEEKRRQKIEMWDSMQEGKSYKGNAKKPQEEDS\nPGPSTSSVLKRKSDRKPLRGGGYNPLSGEGGGACSWRPGRRGPSSGGUG\n\n"
## 
## [[2]]
## [1] ">NP_001316384.1 glutathione peroxidase 1 isoform 5 [Homo sapiens]\nMCAARLAAAAAAAQSVYAFSARPLAGGEPVSLGSLRGKENAKNEEILNSLKYVRPGGGFEPNFMLFEKCE\nVNGAGAHPLFAFLREALPAPSDDATALMTDPKLITWSPVCRNDVAWNFEKFLVGPDGVPLRRYSRRFQTI\nDIEPDIEALLSQGPSCA\n\n"
# WHAT DOES THIS DO? combines the 2 vectors
names(seleno_thingy) <- c("prot1", "prot2")

#Output
seleno_thingy
## $prot1
## [1] ">NP_060915.2 selenoprotein S isoform 1 [Homo sapiens]\nMERQEESLSARPALETEGLRFLHTTVGSLLATYGWYIVFSCILLYVVFQKLSARLRALRQRQLDRAAAAV\nEPDVVVKRQEALAAARLKMQEELNAQVEKHKEKLKQLEEEKRRQKIEMWDSMQEGKSYKGNAKKPQEEDS\nPGPSTSSVLKRKSDRKPLRGGGYNPLSGEGGGACSWRPGRRGPSSGGUG\n\n"
## 
## $prot2
## [1] ">NP_001316384.1 glutathione peroxidase 1 isoform 5 [Homo sapiens]\nMCAARLAAAAAAAQSVYAFSARPLAGGEPVSLGSLRGKENAKNEEILNSLKYVRPGGGFEPNFMLFEKCE\nVNGAGAHPLFAFLREALPAPSDDATALMTDPKLITWSPVCRNDVAWNFEKFLVGPDGVPLRRYSRRFQTI\nDIEPDIEALLSQGPSCA\n\n"

Elements of the list are accessed like this

seleno_thingy[[1]]
## [1] ">NP_060915.2 selenoprotein S isoform 1 [Homo sapiens]\nMERQEESLSARPALETEGLRFLHTTVGSLLATYGWYIVFSCILLYVVFQKLSARLRALRQRQLDRAAAAV\nEPDVVVKRQEALAAARLKMQEELNAQVEKHKEKLKQLEEEKRRQKIEMWDSMQEGKSYKGNAKKPQEEDS\nPGPSTSSVLKRKSDRKPLRGGGYNPLSGEGGGACSWRPGRRGPSSGGUG\n\n"

I’ll clean them with fasta_cleaner()

# first, make a copy of the list for storing the clean data
## I'm just going to copy over the old data
seleno_thingy_clean <- seleno_thingy


# HOW TO MAKE THIS MORE COMPACT? put in a specific value in place of length...
for(i in 1:length(seleno_thingy_clean)){
   clean_fasta_temp <- compbio4all::fasta_cleaner(seleno_thingy[[i]],
                                                       parse = T)
  
  seleno_thingy_clean[[i]] <- clean_fasta_temp
}

Now the data looks like this

seleno_thingy_clean
## $prot1
##   [1] "M" "E" "R" "Q" "E" "E" "S" "L" "S" "A" "R" "P" "A" "L" "E" "T" "E" "G"
##  [19] "L" "R" "F" "L" "H" "T" "T" "V" "G" "S" "L" "L" "A" "T" "Y" "G" "W" "Y"
##  [37] "I" "V" "F" "S" "C" "I" "L" "L" "Y" "V" "V" "F" "Q" "K" "L" "S" "A" "R"
##  [55] "L" "R" "A" "L" "R" "Q" "R" "Q" "L" "D" "R" "A" "A" "A" "A" "V" "E" "P"
##  [73] "D" "V" "V" "V" "K" "R" "Q" "E" "A" "L" "A" "A" "A" "R" "L" "K" "M" "Q"
##  [91] "E" "E" "L" "N" "A" "Q" "V" "E" "K" "H" "K" "E" "K" "L" "K" "Q" "L" "E"
## [109] "E" "E" "K" "R" "R" "Q" "K" "I" "E" "M" "W" "D" "S" "M" "Q" "E" "G" "K"
## [127] "S" "Y" "K" "G" "N" "A" "K" "K" "P" "Q" "E" "E" "D" "S" "P" "G" "P" "S"
## [145] "T" "S" "S" "V" "L" "K" "R" "K" "S" "D" "R" "K" "P" "L" "R" "G" "G" "G"
## [163] "Y" "N" "P" "L" "S" "G" "E" "G" "G" "G" "A" "C" "S" "W" "R" "P" "G" "R"
## [181] "R" "G" "P" "S" "S" "G" "G" "U" "G"
## 
## $prot2
##   [1] "M" "C" "A" "A" "R" "L" "A" "A" "A" "A" "A" "A" "A" "Q" "S" "V" "Y" "A"
##  [19] "F" "S" "A" "R" "P" "L" "A" "G" "G" "E" "P" "V" "S" "L" "G" "S" "L" "R"
##  [37] "G" "K" "E" "N" "A" "K" "N" "E" "E" "I" "L" "N" "S" "L" "K" "Y" "V" "R"
##  [55] "P" "G" "G" "G" "F" "E" "P" "N" "F" "M" "L" "F" "E" "K" "C" "E" "V" "N"
##  [73] "G" "A" "G" "A" "H" "P" "L" "F" "A" "F" "L" "R" "E" "A" "L" "P" "A" "P"
##  [91] "S" "D" "D" "A" "T" "A" "L" "M" "T" "D" "P" "K" "L" "I" "T" "W" "S" "P"
## [109] "V" "C" "R" "N" "D" "V" "A" "W" "N" "F" "E" "K" "F" "L" "V" "G" "P" "D"
## [127] "G" "V" "P" "L" "R" "R" "Y" "S" "R" "R" "F" "Q" "T" "I" "D" "I" "E" "P"
## [145] "D" "I" "E" "A" "L" "L" "S" "Q" "G" "P" "S" "C" "A"

Each element of the list is a vector of character data

class(seleno_thingy_clean[[1]])
## [1] "character"
is(seleno_thingy_clean[[1]])
##  [1] "character"               "vector"                 
##  [3] "data.frameRowLabels"     "SuperClassMethod"       
##  [5] "character_OR_connection" "character_OR_NULL"      
##  [7] "atomic"                  "EnumerationValue"       
##  [9] "vector_OR_Vector"        "vector_OR_factor"
is.vector(seleno_thingy_clean[[1]])
## [1] TRUE

Make an dotplot

For old-times sake we can make a dotplot.
Now for a dotplot

takes each vector in the list and makes it into a separate object

prot1_vector <- seleno_thingy_clean[[1]]
prot2_vector <- seleno_thingy_clean[[2]]

We can dotplot like this

seqinr::dotPlot(prot1_vector,
                prot1_vector)

accesses things directly from the list like this

seqinr::dotPlot(seleno_thingy_clean[[1]],
                seleno_thingy_clean[[2]])

Pairwise alignment

dotPlot likes things in a single vector, but pairwiseAlignment like a single string of characters, so as always we have to process the data.

takes everything in the vector and squish it together "" is the default for read

prot1_str <- paste(seleno_thingy_clean[[1]],sep = "", collapse = "")
prot2_str <- paste(seleno_thingy_clean[[2]],sep = "", collapse = "")

So now things look like this A vector of length 1 with the entire sequence in a single element of the vector.

prot1_str
## [1] "MERQEESLSARPALETEGLRFLHTTVGSLLATYGWYIVFSCILLYVVFQKLSARLRALRQRQLDRAAAAVEPDVVVKRQEALAAARLKMQEELNAQVEKHKEKLKQLEEEKRRQKIEMWDSMQEGKSYKGNAKKPQEEDSPGPSTSSVLKRKSDRKPLRGGGYNPLSGEGGGACSWRPGRRGPSSGGUG"

Protein alignments need a amino acid transition matrix, and we need to use data() to bring those up into active memory (VERY IMPORTANT STEP!)

data(BLOSUM50)

The alignment

align_out <- Biostrings::pairwiseAlignment(pattern = prot1_str, 
                              subject = prot2_str, 
                              type = "global",
                              gapOpening = -9.5,
                              gapExtension = -0.5)

The raw output just looks like this and isn’t very informative about how things look

align_out
## Global PairwiseAlignmentsSingleSubject (1 of 1)
## pattern: MERQEESLSARPALETEGLRFLHTTVGSLLATYG...-----------------ACSWRPGRRGPSSGGUG
## subject: M---------------------------------...IDIEPDIEALLSQGPSCA----------------
## score: -160.2561

The full alignment looks like this. It should have LOTS of gaps because these are two random sequences.

compbio4all::print_pairwise_alignment(align_out)
## [1] "MERQEESLSARPALETEGLRFLHTTVGSLLATYGWYIVFSCILLYVVFQKLSARLRALRQ 60"
## [1] "M---------------------------------------C----------AARL----- 6"
## [1] " "
## [1] "RQLDRAAAAVEPDVVVKRQEALAAA--------RLKMQEELNAQVEKHKEKLKQLEEEKR 112"
## [1] "-----AAAA-------------AAAQSVYAFSAR-------------------------- 22"
## [1] " "
## [1] "RQKIEMWDSMQEGKSYKGNAKKPQEEDSPGPSTSSVLKRKSDRKPLRGGGYNPLSGE--- 169"
## [1] "--------------------------------------------PLAGG-------EPVS 31"
## [1] " "
## [1] "------------------------GGG--------------------------------- 172"
## [1] "LGSLRGKENAKNEEILNSLKYVRPGGGFEPNFMLFEKCEVNGAGAHPLFAFLREALPAPS 91"
## [1] " "
## [1] "------------------------------------------------------------ 172"
## [1] "DDATALMTDPKLITWSPVCRNDVAWNFEKFLVGPDGVPLRRYSRRFQTIDIEPDIEALLS 151"
## [1] " "
## [1] "-----A 227"
## [1] "QGPSCA 211"
## [1] " "

These are two randomly chosen sequences, so the alignment should be pretty bad - we expect there to be just some random points where they match up.

The score is negative, but on its own that MEANS WHAT?

score(align_out)
## [1] -160.2561

pid gives us a more intutive sense of how well they match

pid(align_out)
## [1] 7.189542

Of course, pid can be calculated several ways using different denominators

pid(align_out,type = "PID1")
## [1] 7.189542
pid(align_out,type = "PID2")
## [1] 91.66667
pid(align_out,type = "PID3")
## [1] 14.01274
pid(align_out,type = "PID4")
## [1] 12.71676