Impact of Storm Events

This Analysis looks to evaluate the varying impacts of different types of storms, from both a Population Health perspective and Economic perspective.

Synopsis

Based on the graphs below, Tornados and Floods seem to be the most harmful type of storm. Tornados accounted for the most fatalities and Floods accounted for the most property damage.

Data Processing

Load Data and call it “storm”

storm <- read.csv("C:/Users/A42512/Documents/1-1/Training/Data Science Foundations using R Specialization/Part 5 - Reproducible Research/Course Project 2/repdata_data_StormData.csv.bz2")

head(storm)
##   STATE__           BGN_DATE BGN_TIME TIME_ZONE COUNTY COUNTYNAME STATE  EVTYPE
## 1       1  4/18/1950 0:00:00     0130       CST     97     MOBILE    AL TORNADO
## 2       1  4/18/1950 0:00:00     0145       CST      3    BALDWIN    AL TORNADO
## 3       1  2/20/1951 0:00:00     1600       CST     57    FAYETTE    AL TORNADO
## 4       1   6/8/1951 0:00:00     0900       CST     89    MADISON    AL TORNADO
## 5       1 11/15/1951 0:00:00     1500       CST     43    CULLMAN    AL TORNADO
## 6       1 11/15/1951 0:00:00     2000       CST     77 LAUDERDALE    AL TORNADO
##   BGN_RANGE BGN_AZI BGN_LOCATI END_DATE END_TIME COUNTY_END COUNTYENDN
## 1         0                                               0         NA
## 2         0                                               0         NA
## 3         0                                               0         NA
## 4         0                                               0         NA
## 5         0                                               0         NA
## 6         0                                               0         NA
##   END_RANGE END_AZI END_LOCATI LENGTH WIDTH F MAG FATALITIES INJURIES PROPDMG
## 1         0                      14.0   100 3   0          0       15    25.0
## 2         0                       2.0   150 2   0          0        0     2.5
## 3         0                       0.1   123 2   0          0        2    25.0
## 4         0                       0.0   100 2   0          0        2     2.5
## 5         0                       0.0   150 2   0          0        2     2.5
## 6         0                       1.5   177 2   0          0        6     2.5
##   PROPDMGEXP CROPDMG CROPDMGEXP WFO STATEOFFIC ZONENAMES LATITUDE LONGITUDE
## 1          K       0                                         3040      8812
## 2          K       0                                         3042      8755
## 3          K       0                                         3340      8742
## 4          K       0                                         3458      8626
## 5          K       0                                         3412      8642
## 6          K       0                                         3450      8748
##   LATITUDE_E LONGITUDE_ REMARKS REFNUM
## 1       3051       8806              1
## 2          0          0              2
## 3          0          0              3
## 4          0          0              4
## 5          0          0              5
## 6          0          0              6

Results

  1. Across the United States, which types of events (as indicated in the EVTYPE variable) are most harmful with respect to population health?
TotalFatalities <- aggregate(storm$FATALITIES, by=list(EventType = storm$EVTYPE), FUN = sum) #get the total fatalities by Event Type
OrderedTotalFatalities <- TotalFatalities[order(TotalFatalities$x, decreasing = TRUE),] #order the total fatalities, highest to lowest
Top6TotalFatalities <- head(OrderedTotalFatalities) #the top 6 event types based on total fatalities

library(ggplot2)
ggplot(data = Top6TotalFatalities, aes(x=reorder(EventType, -x), y = x)) + geom_bar(stat="identity", fill="steelblue") + geom_text(aes(label=format(x, big.mark=","), vjust=1.5)) + ggtitle("Top 6 Event Types based on Total Fatalities") + labs(x="Event Type", y="Fatalities")

  1. Across the United States, which types of events have the greatest economic consequences?
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
storm2 <- storm %>% mutate(PropertyDamage = case_when(
  PROPDMGEXP == "h" ~ PROPDMG * 100,
  PROPDMGEXP == "K" ~ PROPDMG * 1000,
  PROPDMGEXP == "M" ~ PROPDMG * 1000000,
  PROPDMGEXP == "B" ~ PROPDMG * 1000000000,
  TRUE ~ PROPDMG
)) #convert the property damage to a dollar amount, utilizing the money sign label

TotalPropertyDamage <- aggregate(storm2$PropertyDamage, by=list(EventType = storm2$EVTYPE), FUN = sum) #get the total property damage by event type
OrderedTotalPropertyDamage <- TotalPropertyDamage[order(TotalPropertyDamage$x, decreasing = TRUE),] #order the property damage highest to lowest
Top6TotalPropertyDamage <- head(OrderedTotalPropertyDamage) #the top 6 event types based on property damage

ggplot(data = Top6TotalPropertyDamage, aes(x=reorder(EventType, -x), y = x)) + geom_bar(stat="identity", fill="steelblue") + geom_text(aes(label=format(x, big.mark = ","), vjust=-0.4)) + ggtitle("Top 6 Event Types based on Total Property Damage") + labs(x="Event Type", y="Property Damage")