obs <- c(21,23,20,22,28,26,25,24,29,26,25,27,37,38,35,39,38,36,31,29,30,34,33,35)
time<- c(-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1)
cm <- c(-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1)
library(DoE.base)
## Loading required package: grid
## Loading required package: conf.design
## Registered S3 method overwritten by 'DoE.base':
## method from
## factorize.factor conf.design
##
## Attaching package: 'DoE.base'
## The following objects are masked from 'package:stats':
##
## aov, lm
## The following object is masked from 'package:graphics':
##
## plot.design
## The following object is masked from 'package:base':
##
## lengths
dat1 <- data.frame(time,cm,obs)
mod <- lm(obs~time*cm,data = dat1)
coef(mod)
## (Intercept) time cm time:cm
## 29.625000 4.958333 -0.625000 -1.958333
halfnormal(mod)
## Warning in halfnormal.lm(mod): halfnormal not recommended for models with more
## residual df than model df
##
## Significant effects (alpha=0.05, Lenth method):
## [1] time time:cm
dat1$time <- as.factor(dat1$time)
dat1$cm <- as.factor(dat1$cm)
model<-aov(obs~time+cm+time*cm,data=dat1)
summary(model)
## Df Sum Sq Mean Sq F value Pr(>F)
## time 1 590.0 590.0 115.506 9.29e-10 ***
## cm 1 9.4 9.4 1.835 0.190617
## time:cm 1 92.0 92.0 18.018 0.000397 ***
## Residuals 20 102.2 5.1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(model)
##Analyze the residuals:
I <- c(21,25,37,31)
II <- c(22,26,39,34)
III <- c(23,24,38,29)
IV <- c(28,25,38,33)
V <- c(20,29,35,30)
VI <- c(26,27,36,35)
obs <- cbind(I,II,III,IV,V,VI)
time<- c(-1,-1,1,1)
cm<- c(-1,1,-1,1)
timecm <- time*cm
gmean <- mean(obs)
gmean
## [1] 29.625
mean <- mean(c(I,II,III,IV,V,VI))
mean
## [1] 29.625
dat <- as.data.frame(cbind(time,cm,timecm,obs))
dat
## time cm timecm I II III IV V VI
## 1 -1 -1 1 21 22 23 28 20 26
## 2 -1 1 -1 25 26 24 25 29 27
## 3 1 -1 -1 37 39 38 38 35 36
## 4 1 1 1 31 34 29 33 30 35
dat$sum <- c(sum(dat[1,4:9]),sum(dat[2,4:9]),sum(dat[3,4:9]),sum(dat[4,4:9]))
dat
## time cm timecm I II III IV V VI sum
## 1 -1 -1 1 21 22 23 28 20 26 140
## 2 -1 1 -1 25 26 24 25 29 27 156
## 3 1 -1 -1 37 39 38 38 35 36 223
## 4 1 1 1 31 34 29 33 30 35 192
effect_factor <- 2/(2^2*6)
effect_time <- (-dat[1,10]-dat[2,10]+dat[3,10]+dat[4,10])*effect_factor # effect of factor A
effect_cm <- (-dat[1,10]+dat[2,10]-dat[3,10]+dat[4,10])*effect_factor # effect of factor B
effect_timecm <- (dat[1,10]-dat[4,10]-dat[2,10]+dat[3,10])*effect_factor # effect of factor interaction AB
effect_factor
## [1] 0.08333333
effect_time
## [1] 9.916667
effect_cm
## [1] -1.25
effect_timecm
## [1] 1.25
y1=29.625+9.916667/2*(-1)+(-1.25)/2*(-1)+1.25/2*(1)
y2=29.625+9.916667/2*(-1)+(-1.25)/2*(1)+1.25/2*(-1)
y3=29.625+9.916667/2*(1)+(-1.25)/2*(-1)+1.25/2*(-1)
y4=29.625+9.916667/2*(1)+(-1.25)/2*(1)+1.25/2*(1)
y1
## [1] 25.91667
y2
## [1] 23.41667
y3
## [1] 34.58333
y4
## [1] 34.58333
e1=I[1]-y1
e2=II[1]-y1
e3=II[1]-y1
e4=IV[1]-y1
e5=V[1]-y1
e6=VI[1]-y1
e7=I[2]-y2
e8=II[2]-y2
e9=III[2]-y2
e10=IV[2]-y2
e11=V[2]-y2
e12=VI[2]-y2
e13=I[3]-y3
e14=II[3]-y3
e15=III[3]-y3
e16=IV[3]-y3
e17=V[3]-y3
e18=VI[3]-y3
e19=I[4]-y4
e20=II[4]-y4
e21=III[4]-y4
e22=IV[4]-y4
e23=V[4]-y4
e24=VI[4]-y4
e1
## [1] -4.916666
e2
## [1] -3.916666
e3
## [1] -3.916666
e4
## [1] 2.083334
e5
## [1] -5.916666
e6
## [1] 0.0833335
e7
## [1] 1.583334
e8
## [1] 2.583334
e9
## [1] 0.5833335
e10
## [1] 1.583334
e11
## [1] 5.583334
e12
## [1] 3.583334
e13
## [1] 2.416666
e14
## [1] 4.416666
e15
## [1] 3.416666
e16
## [1] 3.416666
e17
## [1] 0.4166665
e18
## [1] 1.416666
e19
## [1] -3.583334
e20
## [1] -0.5833335
e21
## [1] -5.583334
e22
## [1] -1.583334
e23
## [1] -4.583334
e24
## [1] 0.4166665
A <- c(-1,1,-1,1)
B <- c(-1,-1,1,1)
AB <- A*B
Factor <- cbind(A,B,AB)
Factor
## A B AB
## [1,] -1 -1 1
## [2,] 1 -1 -1
## [3,] -1 1 -1
## [4,] 1 1 1
I <- c(14.037,13.880,14.821,14.888)
II <- c(16.165,13.860,14.757,14.921)
III <- c(13.972,14.032,14.843,14.415)
IV <- c(13.907,13.914,14.878,14.932)
obs <- cbind(I,II,III,IV)
mean(c(I,II,III,IV))
## [1] 14.51388
dat <- as.data.frame(cbind(A,B,AB,obs))
dat$sum <- c(sum(dat[1,4:7]),sum(dat[2,4:7]),sum(dat[3,4:7]),sum(dat[4,4:7]))
dat
## A B AB I II III IV sum
## 1 -1 -1 1 14.037 16.165 13.972 13.907 58.081
## 2 1 -1 -1 13.880 13.860 14.032 13.914 55.686
## 3 -1 1 -1 14.821 14.757 14.843 14.878 59.299
## 4 1 1 1 14.888 14.921 14.415 14.932 59.156
effect_factor <- 2/(2^2*4)
effect_A <- ((-dat[1,8]-dat[3,8])+(dat[2,8]+dat[4,8]))*effect_factor # effect of factor A
effect_B <- ((-dat[1,8]-dat[2,8])+(dat[3,8]+dat[4,8]))*effect_factor # effect of factor B
effect_AB <- (dat[1,8]+dat[4,8]-dat[2,8]-dat[3,8])*effect_factor # effect of factor interaction AB
effect_factor
## [1] 0.125
effect_A
## [1] -0.31725
effect_B
## [1] 0.586
effect_AB
## [1] 0.2815
library(DoE.base)
A <- rep(A,4)
B <- rep(B,4)
obs <- c(I,II,III,IV)
dat1 <- data.frame(A,B,obs)
dat1
## A B obs
## 1 -1 -1 14.037
## 2 1 -1 13.880
## 3 -1 1 14.821
## 4 1 1 14.888
## 5 -1 -1 16.165
## 6 1 -1 13.860
## 7 -1 1 14.757
## 8 1 1 14.921
## 9 -1 -1 13.972
## 10 1 -1 14.032
## 11 -1 1 14.843
## 12 1 1 14.415
## 13 -1 -1 13.907
## 14 1 -1 13.914
## 15 -1 1 14.878
## 16 1 1 14.932
mod <- lm(obs~A*B,data = dat1)
coef(mod)
## (Intercept) A B A:B
## 14.513875 -0.158625 0.293000 0.140750
halfnormal(mod)
## Warning in halfnormal.lm(mod): halfnormal not recommended for models with more
## residual df than model df
##
## Significant effects (alpha=0.05, Lenth method):
## [1] e7 B A
dat1$A <- as.factor(dat1$A)
dat1$B <- as.factor(dat1$B)
model<-aov(obs~A+B+A*B,data=dat1)
summary(model)
## Df Sum Sq Mean Sq F value Pr(>F)
## A 1 0.403 0.4026 1.262 0.2833
## B 1 1.374 1.3736 4.305 0.0602 .
## A:B 1 0.317 0.3170 0.994 0.3386
## Residuals 12 3.828 0.3190
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(model)
y1=14.51388+(0.586)/2*(-1)
y2=14.51388+(0.586)/2*(-1)
y3=14.51388+(0.586)/2*(1)
y4=14.51388+(0.586)/2*(1)
y1
## [1] 14.22088
y2
## [1] 14.22088
y3
## [1] 14.80688
y4
## [1] 14.80688
e1=I[1]-y1
e2=II[1]-y1
e3=II[1]-y1
e4=IV[1]-y1
e7=I[2]-y2
e8=II[2]-y2
e9=III[2]-y2
e10=IV[2]-y2
e13=I[3]-y3
e14=II[3]-y3
e15=III[3]-y3
e16=IV[3]-y3
e19=I[4]-y4
e20=II[4]-y4
e21=III[4]-y4
e22=IV[4]-y4
e1
## [1] -0.18388
e2
## [1] 1.94412
e3
## [1] 1.94412
e4
## [1] -0.31388
e7
## [1] -0.34088
e8
## [1] -0.36088
e9
## [1] -0.18888
e10
## [1] -0.30688
e13
## [1] 0.01412
e14
## [1] -0.04988
e15
## [1] 0.03612
e16
## [1] 0.07112
e19
## [1] 0.08112
e20
## [1] 0.11412
e21
## [1] -0.39188
e22
## [1] 0.12512
obs <- c(10.0, 18.0, 14.0, 12.5, 19.0, 16.0, 18.5, 0.0, 16.5, 4.5, 17.5, 20.5, 17.5, 33.0, 4.0, 6.0, 1.0, 14.5, 12.0, 14.0, 5.0, 0.0, 10.0, 34.0, 11.0, 25.5, 21.5, 0.0, 0.0, 0.0, 18.5, 19.5, 16.0, 15.0, 11.0, 5.0, 20.5, 18.0, 20.0, 29.5, 19.0, 10.0, 6.5, 18.5, 7.5, 6.0, 0.0, 10.0, 0.0, 16.5, 4.5, 0.0, 23.5, 8.0, 8.0, 8.0, 4.5, 18.0, 14.5, 10.0, 0.0, 17.5, 6.0, 19.5, 18.0, 16.0, 5.5, 10.0, 7.0, 36.0, 15.0, 16.0, 8.5, 0.0, 0.5, 9.0, 3.0, 41.5, 39.0, 6.5, 3.5, 7.0, 8.5, 36.0, 8.0, 4.5, 6.5, 10.0, 13.0, 41.0, 14.0, 21.5, 10.5, 6.5, 0.0, 15.5, 24.0, 16.0, 0.0, 0.0, 0.0, 4.5, 1.0, 4.0, 6.5, 18.0, 5.0, 7.0, 10.0, 32.5, 18.5, 8.0)
A <- c(rep(-1,7),rep(1,7),rep(-1,7),rep(1,7),rep(-1,7),rep(1,7),rep(-1,7),rep(1,7),rep(-1,7),rep(1,7),rep(-1,7),rep(1,7),rep(-1,7),rep(1,7),rep(-1,7), rep(1,7))
B <- c(rep(-1,7),rep(-1,7),rep(1,7),rep(1,7),rep(-1,7),rep(-1,7),rep(1,7),rep(1,7),rep(-1,7),rep(-1,7),rep(1,7),rep(1,7),rep(-1,7),rep(-1,7),rep(1,7),rep(1,7))
C <- c(rep(-1,7),rep(-1,7),rep(-1,7),rep(-1,7),rep(1,7),rep(1,7),rep(1,7),rep(1,7),rep(-1,7),rep(-1,7),rep(-1,7),rep(-1,7),rep(1,7),rep(1,7),rep(1,7),rep(1,7))
D <- c(rep(-1,7),rep(-1,7),rep(-1,7),rep(-1,7),rep(-1,7),rep(-1,7),rep(-1,7),rep(-1,7),rep(1,7),rep(1,7),rep(1,7),rep(1,7),rep(1,7),rep(1,7),rep(1,7),rep(1,7))
dat1 <- data.frame(A,B,C,D,obs)
str(dat1)
## 'data.frame': 112 obs. of 5 variables:
## $ A : num -1 -1 -1 -1 -1 -1 -1 1 1 1 ...
## $ B : num -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ...
## $ C : num -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ...
## $ D : num -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ...
## $ obs: num 10 18 14 12.5 19 16 18.5 0 16.5 4.5 ...
library(DoE.base)
mod <- lm(obs~A*B*C*D,data = dat1)
coef(mod)
## (Intercept) A B C D A:B
## 12.2991071 2.8616071 -1.8616071 -1.1383929 -0.1116071 1.3973214
## A:C B:C A:D B:D C:D A:B:C
## -0.3258929 -1.0133929 0.9151786 0.7098214 -0.1205357 -0.2544643
## A:B:D A:C:D B:C:D A:B:C:D
## 1.0044643 -0.5937500 -0.5491071 0.9241071
## ?halfnormal
halfnormal(mod)
## Warning in halfnormal.lm(mod): halfnormal not recommended for models with more
## residual df than model df
##
## Significant effects (alpha=0.05, Lenth method):
## [1] A e95 e28 e44 e49 B e84 e32 e78
dat1$A <- as.factor(dat1$A)
dat1$B <- as.factor(dat1$B)
dat1$C <- as.factor(dat1$C)
dat1$D <- as.factor(dat1$D)
model<-aov(obs~A+B,data=dat1)
summary(model)
## Df Sum Sq Mean Sq F value Pr(>F)
## A 1 917 917.1 10.809 0.00136 **
## B 1 388 388.1 4.574 0.03469 *
## Residuals 109 9249 84.9
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(model)
A <- rep(rep(c(-1,1),8),7) # Factor A
B <- rep(rep(c(1,1,-1,-1),4),7) # Factor B
C <- rep(rep(c(rep(1,4),rep(-1,4)),2),7) # Factor C
D <- rep(c(rep(1,8),rep(-1,8)),7) # Factor D
I <- c(10.0,0.0,4.0,0.0,0.0,5.0,6.5,16.5,4.5,19.5,15.0,41.5,8.0,21.5,0.0,18.0)
II <- c(18.0,16.5,6.0,10.0,0.0,20.5,18.5,4.5,18.0,18.0,16.0,39.0,4.5,10.5,0.0,5.0)
III <- c(14.0,4.5,1.0,34.0,18.5,18.0,7.5,0.0,14.5,16.0,8.5,6.5,6.5,6.5,0.0,7.0)
IV <- c(12.5,17.5,14.5,11.0,19.5,20.0,6.0,23.5,10.0,5.5,0.0,3.5,10.0,0.0,4.5,10.0)
V <- c(19.0,20.5,12.0,25.5,16.0,29.5,0.0,8.0,0.0,10.0,0.5,7.0,13.0,15.5,1.0,32.5)
VI <- c(16.0,17.5,14.0,21.5,15.0,19.0,10.0,8.0,17.5,7.0,9.0,8.5,41.0,24.0,4.0,18.5)
VII <- c(18.5,33.0,5.0,0.0,11.0,10.0,0.0,8.0,6.0,36.0,3.0,36.0,14.0,16.0,6.5,8.0)
obs <- cbind(I,II,III,IV,V,VI,VII)
mean(c(I,II,III,IV,V,VI,VII))
## [1] 12.29911
obs <- c(1.92, 11.28, 1.09, 5.75, 2.13, 9.53, 1.03, 5.35, 1.60, 11.73, 1.16, 4.68, 2.16, 9.11, 1.07, 5.30)
A <- c(-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1)
B <- c(-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1)
C <- c(-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1)
D <- c(-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1)
dat1 <- data.frame(A,B,C,D,obs)
str(dat1)
## 'data.frame': 16 obs. of 5 variables:
## $ A : num -1 1 -1 1 -1 1 -1 1 -1 1 ...
## $ B : num -1 -1 1 1 -1 -1 1 1 -1 -1 ...
## $ C : num -1 -1 -1 -1 1 1 1 1 -1 -1 ...
## $ D : num -1 -1 -1 -1 -1 -1 -1 -1 1 1 ...
## $ obs: num 1.92 11.28 1.09 5.75 2.13 ...
library(DoE.base)
mod <- lm(obs~A*B*C*D,data = dat1)
coef(mod)
## (Intercept) A B C D A:B
## 4.680625 3.160625 -1.501875 -0.220625 -0.079375 -1.069375
## A:C B:C A:D B:D C:D A:B:C
## -0.298125 0.229375 -0.056875 -0.046875 0.029375 0.344375
## A:B:D A:C:D B:C:D A:B:C:D
## -0.096875 -0.010625 0.094375 0.141875
## ?halfnormal
halfnormal(mod)
##
## Significant effects (alpha=0.05, Lenth method):
## [1] A B A:B A:B:C
dat1$A <- as.factor(dat1$A)
dat1$B <- as.factor(dat1$B)
dat1$C <- as.factor(dat1$C)
dat1$D <- as.factor(dat1$D)
model<-aov(obs~A+B+C+A*B*C,data=dat1)
summary(model)
## Df Sum Sq Mean Sq F value Pr(>F)
## A 1 159.83 159.83 1563.061 1.84e-10 ***
## B 1 36.09 36.09 352.937 6.66e-08 ***
## C 1 0.78 0.78 7.616 0.02468 *
## A:B 1 18.30 18.30 178.933 9.33e-07 ***
## A:C 1 1.42 1.42 13.907 0.00579 **
## B:C 1 0.84 0.84 8.232 0.02085 *
## A:B:C 1 1.90 1.90 18.556 0.00259 **
## Residuals 8 0.82 0.10
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(model)
dat1 <- data.frame(A,B,C,D,log(obs))
str(dat1)
## 'data.frame': 16 obs. of 5 variables:
## $ A : num -1 1 -1 1 -1 1 -1 1 -1 1 ...
## $ B : num -1 -1 1 1 -1 -1 1 1 -1 -1 ...
## $ C : num -1 -1 -1 -1 1 1 1 1 -1 -1 ...
## $ D : num -1 -1 -1 -1 -1 -1 -1 -1 1 1 ...
## $ log.obs.: num 0.6523 2.423 0.0862 1.7492 0.7561 ...
library(DoE.base)
mod <- lm(log(obs)~A*B*C*D,data = dat1)
coef(mod)
## (Intercept) A B C D A:B
## 1.185417116 0.812870345 -0.314277554 -0.006408558 -0.018077390 -0.024684570
## A:C B:C A:D B:D C:D A:B:C
## -0.039723700 -0.004225796 -0.009578245 0.003708723 0.017780432 0.063434408
## A:B:D A:C:D B:C:D A:B:C:D
## -0.029875960 -0.003740235 0.003765760 0.031322043
## ?halfnormal
halfnormal(mod)
##
## Significant effects (alpha=0.05, Lenth method):
## [1] A B A:B:C
dat1$A <- as.factor(dat1$A)
dat1$B <- as.factor(dat1$B)
dat1$C <- as.factor(dat1$C)
dat1$D <- as.factor(dat1$D)
model<-aov(log(obs)~A+B+C+A*B*C,data=dat1)
summary(model)
## Df Sum Sq Mean Sq F value Pr(>F)
## A 1 10.572 10.572 1994.556 6.98e-11 ***
## B 1 1.580 1.580 298.147 1.29e-07 ***
## C 1 0.001 0.001 0.124 0.73386
## A:B 1 0.010 0.010 1.839 0.21207
## A:C 1 0.025 0.025 4.763 0.06063 .
## B:C 1 0.000 0.000 0.054 0.82223
## A:B:C 1 0.064 0.064 12.147 0.00826 **
## Residuals 8 0.042 0.005
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(model)
#(d): ### same liner model and same hypothesis as above.
obs <- c(8.11,5.56,5.77,5.82,9.17,7.8,3.23,5.69,8.82,14.23,9.2,8.94,8.68,11.49,6.25,9.12,7.93,5,7.47,12,9.86,3.65,6.4,11.61,12.43,17.55,8.87,25.38,13.06,18.85,11.78,26.05)
A <- c(-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1)
B <- c(-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1)
C <- c(-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1)
D <- c(-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1)
E <- c(rep(-1,16),rep(1,16))
dat1 <- data.frame(A,B,C,D,E,obs)
str(dat1)
## 'data.frame': 32 obs. of 6 variables:
## $ A : num -1 1 -1 1 -1 1 -1 1 -1 1 ...
## $ B : num -1 -1 1 1 -1 -1 1 1 -1 -1 ...
## $ C : num -1 -1 -1 -1 1 1 1 1 -1 -1 ...
## $ D : num -1 -1 -1 -1 -1 -1 -1 -1 1 1 ...
## $ E : num -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ...
## $ obs: num 8.11 5.56 5.77 5.82 9.17 ...
library(DoE.base)
mod <- lm(obs~A*B*C*D*E,data = dat1)
coef(mod)
## (Intercept) A B C D E
## 10.1803125 1.6159375 0.0434375 -0.0121875 2.9884375 2.1878125
## A:B A:C B:C A:D B:D C:D
## 1.2365625 -0.0015625 -0.1953125 1.6665625 -0.0134375 0.0034375
## A:E B:E C:E D:E A:B:C A:B:D
## 1.0271875 1.2834375 0.3015625 1.3896875 0.2503125 -0.3453125
## A:C:D B:C:D A:B:E A:C:E B:C:E A:D:E
## -0.0634375 0.3053125 1.1853125 -0.2590625 0.1709375 0.9015625
## B:D:E C:D:E A:B:C:D A:B:C:E A:B:D:E A:C:D:E
## -0.0396875 0.3959375 -0.0740625 -0.1846875 0.4071875 0.1278125
## B:C:D:E A:B:C:D:E
## -0.0746875 -0.3553125
## ?halfnormal
halfnormal(mod)
##
## Significant effects (alpha=0.05, Lenth method):
## [1] D E A:D A D:E B:E A:B A:B:E A:E A:D:E
# (a): ### From halfnorm plot, we have A, E, D, A:B, A:D, A:E, B:E, D:E, A:B:E A:D:E, which is significant.
dat1$A <- as.factor(dat1$A)
dat1$B <- as.factor(dat1$B)
dat1$C <- as.factor(dat1$C)
dat1$D <- as.factor(dat1$D)
dat1$E <- as.factor(dat1$E)
model<-aov(obs~A+B+D+E+A*B+A*D+A*E+B*E+D*E+A*B*E+A*D*E,data=dat1)
summary(model)
## Df Sum Sq Mean Sq F value Pr(>F)
## A 1 83.56 83.56 51.362 6.10e-07 ***
## B 1 0.06 0.06 0.037 0.849178
## D 1 285.78 285.78 175.664 2.30e-11 ***
## E 1 153.17 153.17 94.149 5.24e-09 ***
## A:B 1 48.93 48.93 30.076 2.28e-05 ***
## A:D 1 88.88 88.88 54.631 3.87e-07 ***
## A:E 1 33.76 33.76 20.754 0.000192 ***
## B:E 1 52.71 52.71 32.400 1.43e-05 ***
## D:E 1 61.80 61.80 37.986 5.07e-06 ***
## A:B:E 1 44.96 44.96 27.635 3.82e-05 ***
## A:D:E 1 26.01 26.01 15.988 0.000706 ***
## Residuals 20 32.54 1.63
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(model)