Week 11 - Homework

6.8 Effects of Two Different Cultural Medians

##    obs timeH median
## 1   21    12      1
## 2   22    12      1
## 3   25    12      2
## 4   26    12      2
## 5   23    12      1
## 6   28    12      1
## 7   24    12      2
## 8   25    12      2
## 9   20    12      1
## 10  26    12      1
## 11  29    12      2
## 12  27    12      2
## 13  37    18      1
## 14  39    18      1
## 15  31    18      2
## 16  34    18      2
## 17  38    18      1
## 18  38    18      1
## 19  29    18      2
## 20  33    18      2
## 21  35    18      1
## 22  36    18      1
## 23  30    18      2
## 24  35    18      2
## Analysis of Variance Table
## 
## Response: obs
##              Df Sum Sq Mean Sq  F value    Pr(>F)    
## median        1   9.38    9.38   1.8352 0.1906172    
## timeH         1 590.04  590.04 115.5057 9.291e-10 ***
## median:timeH  1  92.04   92.04  18.0179 0.0003969 ***
## Residual     20 102.17    5.11                       
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The main effect, time and the interaction prove to be significant to the growth rate.

6.12 $2^2 Factorial Design

##             Df Sum Sq Mean Sq F value Pr(>F)
## A4           1  0.374  0.3739   0.898  0.362
## B4           1  0.371  0.3709   0.891  0.364
## A4:B4        1  0.182  0.1823   0.438  0.521
## Residuals   12  4.994  0.4162

## hat values (leverages) are all = 0.25
##  and there are no factor predictors; no plot no. 5

## 6.21 \(2^4\) Golfer Factorial Design

##     replications A3 B3 C3 D3 distance
## 1              1 -1 -1 -1 -1     10.0
## 2              2  1 -1 -1 -1     18.0
## 3              3 -1  1 -1 -1     14.0
## 4              4  1  1 -1 -1     12.5
## 5              5 -1 -1  1 -1     19.0
## 6              6  1 -1  1 -1     16.0
## 7              7 -1  1  1 -1     18.5
## 8              1  1  1  1 -1      0.0
## 9              2 -1 -1 -1  1     16.5
## 10             3  1 -1 -1  1      4.5
## 11             4 -1  1 -1  1     17.5
## 12             5  1  1 -1  1     20.5
## 13             6 -1 -1  1  1     17.5
## 14             7  1 -1  1  1     33.0
## 15             1 -1  1  1  1      4.0
## 16             2  1  1  1  1      6.0
## 17             3 -1 -1 -1 -1      1.0
## 18             4  1 -1 -1 -1     14.5
## 19             5 -1  1 -1 -1     12.0
## 20             6  1  1 -1 -1     14.0
## 21             7 -1 -1  1 -1      5.0
## 22             1  1 -1  1 -1      0.0
## 23             2 -1  1  1 -1     10.0
## 24             3  1  1  1 -1     34.0
## 25             4 -1 -1 -1  1     11.0
## 26             5  1 -1 -1  1     25.5
## 27             6 -1  1 -1  1     21.5
## 28             7  1  1 -1  1      0.0
## 29             1 -1 -1  1  1      0.0
## 30             2  1 -1  1  1      0.0
## 31             3 -1  1  1  1     18.5
## 32             4  1  1  1  1     19.5
## 33             5 -1 -1 -1 -1     16.0
## 34             6  1 -1 -1 -1     15.0
## 35             7 -1  1 -1 -1     11.0
## 36             1  1  1 -1 -1      5.0
## 37             2 -1 -1  1 -1     20.5
## 38             3  1 -1  1 -1     18.0
## 39             4 -1  1  1 -1     20.0
## 40             5  1  1  1 -1     29.5
## 41             6 -1 -1 -1  1     19.0
## 42             7  1 -1 -1  1     10.0
## 43             1 -1  1 -1  1      6.5
## 44             2  1  1 -1  1     18.5
## 45             3 -1 -1  1  1      7.5
## 46             4  1 -1  1  1      6.0
## 47             5 -1  1  1  1      0.0
## 48             6  1  1  1  1     10.0
## 49             7 -1 -1 -1 -1      0.0
## 50             1  1 -1 -1 -1     16.5
## 51             2 -1  1 -1 -1      4.5
## 52             3  1  1 -1 -1      0.0
## 53             4 -1 -1  1 -1     23.5
## 54             5  1 -1  1 -1      8.0
## 55             6 -1  1  1 -1      8.0
## 56             7  1  1  1 -1      8.0
## 57             1 -1 -1 -1  1      4.5
## 58             2  1 -1 -1  1     18.0
## 59             3 -1  1 -1  1     14.5
## 60             4  1  1 -1  1     10.0
## 61             5 -1 -1  1  1      0.0
## 62             6  1 -1  1  1     17.5
## 63             7 -1  1  1  1      6.0
## 64             1  1  1  1  1     19.5
## 65             2 -1 -1 -1 -1     18.0
## 66             3  1 -1 -1 -1     16.0
## 67             4 -1  1 -1 -1      5.5
## 68             5  1  1 -1 -1     10.0
## 69             6 -1 -1  1 -1      7.0
## 70             7  1 -1  1 -1     36.0
## 71             1 -1  1  1 -1     15.0
## 72             2  1  1  1 -1     16.0
## 73             3 -1 -1 -1  1      8.5
## 74             4  1 -1 -1  1      0.0
## 75             5 -1  1 -1  1      0.5
## 76             6  1  1 -1  1      9.0
## 77             7 -1 -1  1  1      3.0
## 78             1  1 -1  1  1     41.5
## 79             2 -1  1  1  1     39.0
## 80             3  1  1  1  1      6.5
## 81             4 -1 -1 -1 -1      3.5
## 82             5  1 -1 -1 -1      7.0
## 83             6 -1  1 -1 -1      8.5
## 84             7  1  1 -1 -1     36.0
## 85             1 -1 -1  1 -1      8.0
## 86             2  1 -1  1 -1      4.5
## 87             3 -1  1  1 -1      6.5
## 88             4  1  1  1 -1     10.0
## 89             5 -1 -1 -1  1     13.0
## 90             6  1 -1 -1  1     41.0
## 91             7 -1  1 -1  1     14.0
## 92             1  1  1 -1  1     21.5
## 93             2 -1 -1  1  1     10.5
## 94             3  1 -1  1  1      6.5
## 95             4 -1  1  1  1      0.0
## 96             5  1  1  1  1     15.5
## 97             6 -1 -1 -1 -1     24.0
## 98             7  1 -1 -1 -1     16.0
## 99             1 -1  1 -1 -1      0.0
## 100            2  1  1 -1 -1      0.0
## 101            3 -1 -1  1 -1      0.0
## 102            4  1 -1  1 -1      4.5
## 103            5 -1  1  1 -1      1.0
## 104            6  1  1  1 -1      4.0
## 105            7 -1 -1 -1  1      6.5
## 106            1  1 -1 -1  1     18.0
## 107            2 -1  1 -1  1      5.0
## 108            3  1  1 -1  1      7.0
## 109            4 -1 -1  1  1     10.0
## 110            5  1 -1  1  1     32.5
## 111            6 -1  1  1  1     18.5
## 112            7  1  1  1  1      8.0
## Warning in halfnormal.lm(model5): halfnormal not recommended for models with
## more residual df than model df
## 
## Significant effects (alpha=0.05, Lenth method):
## [1] e70 e81 e91 A3

Factor A = length 10ft = -1 30ft = 1

Factor B = Type of Putter mallet = -1 cavity-back = 1

Factor C = Break of Putter Straight = -1 Breaking = 1

Factor D = Slope of Putt level = -1 downhill = 1

6.36 \(2^4\) Factorial Design

## 
## Significant effects (alpha=0.05, Lenth method):
## [1] A2       B2       A2:B2    A2:B2:C2

##             Df Sum Sq Mean Sq  F value   Pr(>F)    
## A2           1 159.83  159.83 1563.061 1.84e-10 ***
## B2           1  36.09   36.09  352.937 6.66e-08 ***
## C2           1   0.78    0.78    7.616  0.02468 *  
## A2:B2        1  18.30   18.30  178.933 9.33e-07 ***
## A2:C2        1   1.42    1.42   13.907  0.00579 ** 
## B2:C2        1   0.84    0.84    8.232  0.02085 *  
## A2:B2:C2     1   1.90    1.90   18.556  0.00259 ** 
## Residuals    8   0.82    0.10                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## hat values (leverages) are all = 0.5
##  and there are no factor predictors; no plot no. 5

a. The significant main effects are A and B. The significant interactions effects are AB, ABC.

b. The model is inadequate because the normal probability plot is not desirable because the plot has some curviture to it.

## 
## Significant effects (alpha=0.05, Lenth method):
## [1] A2       B2       A2:B2:C2

##             Df Sum Sq Mean Sq  F value   Pr(>F)    
## A2           1 10.572  10.572 1994.556 6.98e-11 ***
## B2           1  1.580   1.580  298.147 1.29e-07 ***
## C2           1  0.001   0.001    0.124  0.73386    
## A2:B2        1  0.010   0.010    1.839  0.21207    
## A2:C2        1  0.025   0.025    4.763  0.06063 .  
## B2:C2        1  0.000   0.000    0.054  0.82223    
## A2:B2:C2     1  0.064   0.064   12.147  0.00826 ** 
## Residuals    8  0.042   0.005                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## A2           1 10.572  10.572   962.9 1.41e-13 ***
## B2           1  1.580   1.580   143.9 2.09e-08 ***
## Residuals   13  0.143   0.011                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## hat values (leverages) are all = 0.5
##  and there are no factor predictors; no plot no. 5

The significant interaction effects after the transformation are A, B, and ABC.

d.

6.39 \(2^5\) Factorial Design

## 
## Significant effects (alpha=0.05, Lenth method):
##  [1] D1       E1       A1:D1    A1       D1:E1    B1:E1    A1:B1    A1:B1:E1 
## 
##  [9] A1:E1    A1:D1:E1

##             Df Sum Sq Mean Sq F value   Pr(>F)    
## A1           1  83.56   83.56  57.233 1.14e-06 ***
## B1           1   0.06    0.06   0.041 0.841418    
## D1           1 285.78  285.78 195.742 2.16e-10 ***
## E1           1 153.17  153.17 104.910 1.97e-08 ***
## A1:B1        1  48.93   48.93  33.514 2.77e-05 ***
## A1:D1        1  88.88   88.88  60.875 7.66e-07 ***
## B1:D1        1   0.01    0.01   0.004 0.950618    
## A1:E1        1  33.76   33.76  23.126 0.000193 ***
## B1:E1        1  52.71   52.71  36.103 1.82e-05 ***
## D1:E1        1  61.80   61.80  42.328 7.24e-06 ***
## A1:B1:D1     1   3.82    3.82   2.613 0.125501    
## A1:B1:E1     1  44.96   44.96  30.794 4.40e-05 ***
## A1:D1:E1     1  26.01   26.01  17.815 0.000650 ***
## B1:D1:E1     1   0.05    0.05   0.035 0.854935    
## A1:B1:D1:E1  1   5.31    5.31   3.634 0.074735 .  
## Residuals   16  23.36    1.46                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## hat values (leverages) are all = 0.5
##  and there are no factor predictors; no plot no. 5

a. The significant main effects are A,D,E. There are significant interaction effects: AD, DE, AB, ABE, AE, ADE.

b. The residual plots do not show any violations to the assumptions of normalness and constance variance.

c. The non-significant factor is Factor C. When you remove Factor C from the experiment, it is now a 2^4 factorial design. After looking at the ANOVA table, same factors are significant.

##             Df Sum Sq Mean Sq F value   Pr(>F)    
## A1           1  83.56   83.56  57.233 1.14e-06 ***
## B1           1   0.06    0.06   0.041 0.841418    
## D1           1 285.78  285.78 195.742 2.16e-10 ***
## E1           1 153.17  153.17 104.910 1.97e-08 ***
## A1:B1        1  48.93   48.93  33.514 2.77e-05 ***
## A1:D1        1  88.88   88.88  60.875 7.66e-07 ***
## B1:D1        1   0.01    0.01   0.004 0.950618    
## A1:E1        1  33.76   33.76  23.126 0.000193 ***
## B1:E1        1  52.71   52.71  36.103 1.82e-05 ***
## D1:E1        1  61.80   61.80  42.328 7.24e-06 ***
## A1:B1:D1     1   3.82    3.82   2.613 0.125501    
## A1:B1:E1     1  44.96   44.96  30.794 4.40e-05 ***
## A1:D1:E1     1  26.01   26.01  17.815 0.000650 ***
## B1:D1:E1     1   0.05    0.05   0.035 0.854935    
## A1:B1:D1:E1  1   5.31    5.31   3.634 0.074735 .  
## Residuals   16  23.36    1.46                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

d.