time <- c(rep(12,12),rep(18,12))
culmedium <- c(rep(c(1,1,2,2),6))
observations<-c(21,22,25,26,23,28,24,25,20,26,29,27,37,39,31,34,38,38,29,33,35,36,30,35)
time<-as.factor(time)
culmedium<-as.factor(culmedium)
model<-aov(observations~time*culmedium)
summary(model)
## Df Sum Sq Mean Sq F value Pr(>F)
## time 1 590.0 590.0 115.506 9.29e-10 ***
## culmedium 1 9.4 9.4 1.835 0.190617
## time:culmedium 1 92.0 92.0 18.018 0.000397 ***
## Residuals 20 102.2 5.1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(model)
library(DoE.base)
## Loading required package: grid
## Loading required package: conf.design
## Registered S3 method overwritten by 'DoE.base':
## method from
## factorize.factor conf.design
##
## Attaching package: 'DoE.base'
## The following objects are masked from 'package:stats':
##
## aov, lm
## The following object is masked from 'package:graphics':
##
## plot.design
## The following object is masked from 'package:base':
##
## lengths
A <-( c(rep(-1,4),rep(1,4),rep(-1,4),rep(1,4)))
B <- (c(rep(-1,4),rep(-1,4),rep(1,4),rep(1,4)))
R <- c(rep(seq(1,4),4))
obs<-c(14.037,16.165,13.972,13.907,13.880,13.860,14.032,13.914,14.821,14.757,14.843,14.878,14.888,14.921,14.415,14.932)
m1<-aov(obs~A*B)
coef(m1)
## (Intercept) A B A:B
## 14.513875 -0.158625 0.293000 0.140750
fA<-as.factor(A)
fB<-as.factor(B)
data.frame(fA,fB,obs)
## fA fB obs
## 1 -1 -1 14.037
## 2 -1 -1 16.165
## 3 -1 -1 13.972
## 4 -1 -1 13.907
## 5 1 -1 13.880
## 6 1 -1 13.860
## 7 1 -1 14.032
## 8 1 -1 13.914
## 9 -1 1 14.821
## 10 -1 1 14.757
## 11 -1 1 14.843
## 12 -1 1 14.878
## 13 1 1 14.888
## 14 1 1 14.921
## 15 1 1 14.415
## 16 1 1 14.932
model1<-aov(obs~fA*fB)
coef(model1)
## (Intercept) fA1 fB1 fA1:fB1
## 14.52025 -0.59875 0.30450 0.56300
summary(model1)
## Df Sum Sq Mean Sq F value Pr(>F)
## fA 1 0.403 0.4026 1.262 0.2833
## fB 1 1.374 1.3736 4.305 0.0602 .
## fA:fB 1 0.317 0.3170 0.994 0.3386
## Residuals 12 3.828 0.3190
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(model1)
m1<-aov(obs~A*B)
coef(m1)
## (Intercept) A B A:B
## 14.513875 -0.158625 0.293000 0.140750
replicates<-c(10,18,14,12.5,19,16,18.5,0,16.5,4.5,17.5,20.5,17.5,33,4,6,1,14.5,12,14,5,0,10,34,11,25.5,21.5,0,0,0,18.5,19.5,16,15,11,5,20.5,18,20,29.5,19,10,6.5,18.5,7.5,6,0,10,0,16.5,4.5,0,23.5,8,8,8,4.5,18,14.5,10,0,17.5,6.0,19.5,18,16,5.5,10.0,7.0,36.0,15.0,16,8.5,0,0.5,9,3.0,41.5,39.0,6.5,3.5,7.0,8.5,36.0,8.0,4.5,6.5,10,13,41,14,21.5,10.5,6.5,0,15.5,24.0,16,0,0,0,4.5,1,4,6.5,18,5,7,10,32.5,18.5,8)
length <- rep(c(-1,1,-1,1),28)
type <- rep(c(-1,-1,1,1),28)
brk <- rep(c(-1,-1,-1,-1,1,1,1,1),14)
slope <- c(rep(-1,8),rep(1,8))
slope <- rep(slope,7)
model7 <- aov(replicates~length*type*brk*slope)
summary(model7)
## Df Sum Sq Mean Sq F value Pr(>F)
## length 1 399 399.4 4.003 0.0482 *
## type 1 52 52.3 0.524 0.4710
## brk 1 12 11.9 0.119 0.7306
## slope 1 32 31.6 0.317 0.5748
## length:type 1 109 109.0 1.093 0.2985
## length:brk 1 2 2.4 0.024 0.8763
## type:brk 1 42 41.9 0.420 0.5185
## length:slope 1 26 25.6 0.256 0.6139
## type:slope 1 1 1.4 0.014 0.9061
## brk:slope 1 20 20.1 0.202 0.6542
## length:type:brk 1 9 8.9 0.089 0.7664
## length:type:slope 1 152 152.1 1.524 0.2200
## length:brk:slope 1 42 41.9 0.420 0.5185
## type:brk:slope 1 13 12.6 0.126 0.7236
## length:type:brk:slope 1 65 65.3 0.654 0.4206
## Residuals 96 9578 99.8
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
A <- rep(c(-1,1),8)
B <- rep(c(-1,-1,1,1),4)
C <- c(rep(-1,4),rep(1,4),rep(-1,4),rep(1,4))
D <- c(rep(-1,8),rep(1,8))
resitivity <- c(1.92,11.28,1.09, 5.75,2.13,9.53,1.03,5.35,1.60,11.73,1.16,4.68,2.16,9.11,1.07,5.30)
dat<-data.frame(A,B,C,D,resitivity)
model2<-aov(resitivity~A*B*C*D,data = dat)
halfnormal(model2)
##
## Significant effects (alpha=0.05, Lenth method):
## [1] A B A:B A:B:C
model3<-lm(resitivity~A*B)
coef(model3)
## (Intercept) A B A:B
## 4.680625 3.160625 -1.501875 -1.069375
halfnormal(model2)
##
## Significant effects (alpha=0.05, Lenth method):
## [1] A B A:B A:B:C
coef(model3)
## (Intercept) A B A:B
## 4.680625 3.160625 -1.501875 -1.069375
FA<-as.factor(A)
FB<-as.factor(B)
model4<-aov(resitivity~FA*FB)
plot(model4)
q<-log(resitivity)
halfnormal(aov(q~A*B*C*D))
##
## Significant effects (alpha=0.05, Lenth method):
## [1] A B A:B:C
plot(aov(resitivity~FA*FB))
### After doing trasformation by using log we can say that, by analysing the plots we can say that the transformation that we did was benificial.
halfnormal(aov(q~A*B*C*D))
##
## Significant effects (alpha=0.05, Lenth method):
## [1] A B A:B:C
coef(aov(q~A*B))
## (Intercept) A B A:B
## 1.18541712 0.81287034 -0.31427755 -0.02468457
library(DoE.base)
A <- rep(c(-1,1),16)
B <- rep(c(-1,-1,1,1),8)
C <- rep(c(rep(-1,4),rep(1,4)),4)
D <- rep(c(rep(-1,8),rep(1,8)),2)
E <- c(rep(-1,16),rep(1,16))
dat1<-data.frame(A,B,C,D,E)
obs1<-c(8.11,5.56,5.77,5.82,9.17,7.8,3.23,5.69,8.82,14.23,9.2,8.94,8.68,11.49,6.25,9.12,7.93,5,7.47,12,9.86,3.65,6.4,11.61,12.43,17.55,8.87,25.38,13.06,18.85,11.78,26.05)
model4<-aov(obs1~A*B*C*D*E,data = dat1)
halfnormal(model4)
##
## Significant effects (alpha=0.05, Lenth method):
## [1] D E A:D A D:E B:E A:B A:B:E A:E A:D:E
FA1 <- as.factor(A)
FB1 <- as.factor(B)
FD1 <- as.factor(D)
FE1 <- as.factor(E)
plot(aov(obs1~FA1*FB1*FD1*FE1))
summary(aov(obs1~A*B*E*D))
## Df Sum Sq Mean Sq F value Pr(>F)
## A 1 83.56 83.56 57.233 1.14e-06 ***
## B 1 0.06 0.06 0.041 0.841418
## E 1 153.17 153.17 104.910 1.97e-08 ***
## D 1 285.78 285.78 195.742 2.16e-10 ***
## A:B 1 48.93 48.93 33.514 2.77e-05 ***
## A:E 1 33.76 33.76 23.126 0.000193 ***
## B:E 1 52.71 52.71 36.103 1.82e-05 ***
## A:D 1 88.88 88.88 60.875 7.66e-07 ***
## B:D 1 0.01 0.01 0.004 0.950618
## E:D 1 61.80 61.80 42.328 7.24e-06 ***
## A:B:E 1 44.96 44.96 30.794 4.40e-05 ***
## A:B:D 1 3.82 3.82 2.613 0.125501
## A:E:D 1 26.01 26.01 17.815 0.000650 ***
## B:E:D 1 0.05 0.05 0.035 0.854935
## A:B:E:D 1 5.31 5.31 3.634 0.074735 .
## Residuals 16 23.36 1.46
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
coef(aov(obs1~A*B*E*D))
## (Intercept) A B E D A:B
## 10.1803125 1.6159375 0.0434375 2.1878125 2.9884375 1.2365625
## A:E B:E A:D B:D E:D A:B:E
## 1.0271875 1.2834375 1.6665625 -0.0134375 1.3896875 1.1853125
## A:B:D A:E:D B:E:D A:B:E:D
## -0.3453125 0.9015625 -0.0396875 0.4071875