Question 6.8

Given, experiment is 2^2 design with two factors namely time and culture medium.

Here, k=2 and n=6

Model Equation

Y{ijk}= \(\mu\)+\(\alpha_{i}\)+\(\beta_{j}\)+\(\alpha\beta_{ij}\)+\(\epsilon_{ijk}\)

Where

\(\alpha_i\) is Main Effects of Factor A

\(\beta_j\) is Main Effects of Factor B

\(\alpha\beta_{ij}\) is Interaction effects of Factors A and Factors B

Hypothesis to be tested

Null Hypothesis(Ho): \(\alpha_i=0\) For all i

Alternative Hypothesis(Ha): \(\alpha_i\neq0\) For some i

Null Hypothesis(Ho): \(\beta_j=0\) For all i

Alternative Hypothesis(Ha): \(\beta_j\neq0\) For some i

Null Hypothesis(H0):\(\alpha\beta_{ij}=0\) For all ij

Alternative Hypothesis(Ha):\(\alpha\beta_{ij}\neq0\) For some ij

we will test first highest order interaction effects hypothesis

library(GAD)
## Loading required package: matrixStats
## Loading required package: R.methodsS3
## R.methodsS3 v1.8.1 (2020-08-26 16:20:06 UTC) successfully loaded. See ?R.methodsS3 for help.
observations<-c(21,22,25,26,23,28,24,25,20,26,29,27,37,39,31,34,38,38,29,33,35,36,30,35)
cmedium<-c(rep(1,2),rep(2,2),rep(1,2),rep(2,2),rep(1,2),rep(2,2),rep(1,2),rep(2,2),rep(1,2),rep(2,2),rep(1,2),rep(2,2))
t<-c(rep(12,12),rep(18,12))
cmedium<-as.fixed(cmedium)
t<-as.fixed(t)
df<-data.frame(observations,cmedium,t)
model<-aov(observations~cmedium+t+cmedium*t, data = df)
GAD::gad(model)
## Analysis of Variance Table
## 
## Response: observations
##           Df Sum Sq Mean Sq  F value    Pr(>F)    
## cmedium    1   9.38    9.38   1.8352 0.1906172    
## t          1 590.04  590.04 115.5057 9.291e-10 ***
## cmedium:t  1  92.04   92.04  18.0179 0.0003969 ***
## Residual  20 102.17    5.11                       
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
interaction.plot(t,cmedium,observations, type = "l",main ="Interraction Plot",col='darkred')

plot(model)

From the results of gad test, the p-value of interaction effect is 0.0003969, which is lesser than the \(\alpha\)=0.05,hence we conclude that we reject the null hypothesis.We also conclude that there is significance interaction between present between two factors which can be seen from Interaction plot.

Since we have rejected the null hypothesis,then we must stop exploration on the associated factors

From the residual plot we can conclude that data is normally distributed except few outliners, but variances are widely spread and hence are not constant. Hence we can conclude that model is not adequate

Question 6.12

Hypothesis to be tested

Null Hypothesis(Ho): \(\alpha_i=0\) For all i

Alternative Hypothesis(Ha): \(\alpha_i\neq0\) For some i

Null Hypothesis(Ho): \(\beta_j=0\) For all i

Alternative Hypothesis(Ha): \(\beta_j\neq0\) For some i

Null Hypothesis(H0):\(\alpha\beta_{ij}=0\) For all ij

Alternative Hypothesis(Ha):\(\alpha\beta_{ij}\neq0\) For some ij

we will test first highest order interaction effects hypothesis

**To calculate factor effects, we know according to formula, Effect= 2(Contrast)/((2^k)*n)**

Where, k= Number of factors and n= Number of replicates

Here, k=2 and n=4

a<-c(13.880,13.860,14.032,13.914)
b<-c(14.821,14.757,14.853,14.878)
ab<-c(14.888,14.921,14.415,14.932)
one<-c(14.037,16.165,13.972,13.907)
add_a<-sum(a)
add_b<-sum(b)
add_ab<-sum(ab)
add_one<-sum(one)
facteffe_a<-(2*(add_a+add_ab-add_b-add_one))/(2^2*4)
facteffe_b<-(2*(add_b+add_ab-add_a-add_one))/(2^2*4)
facteffe_ab<-(2*(add_a+add_b-add_ab-add_one))/(2^2*4)
facteffe_a
## [1] -0.3185
facteffe_b
## [1] 0.58725
facteffe_ab
## [1] -0.28025

Q.6.12(a)

The factor effect are as follows

Factor Effect of A= -0.3185

Factor Effect of B= 0.58725

Factor Effect of AB= -0.28025

Now, we will conduct analysis of variance using anova

thick<-c(14.037,16.165,13.972,13.907,13.880,13.860,14.032,13.914,14.821,14.757,14.843,14.878,14.888,14.921,14.415,14.932)
factA<-c(rep(-1,4),rep(1,4),rep(-1,4),rep(1,4))
factB<-c(rep(-1,4),rep(-1,4),rep(1,4),rep(1,4))
df<-data.frame(thick,factA,factB)
df
##     thick factA factB
## 1  14.037    -1    -1
## 2  16.165    -1    -1
## 3  13.972    -1    -1
## 4  13.907    -1    -1
## 5  13.880     1    -1
## 6  13.860     1    -1
## 7  14.032     1    -1
## 8  13.914     1    -1
## 9  14.821    -1     1
## 10 14.757    -1     1
## 11 14.843    -1     1
## 12 14.878    -1     1
## 13 14.888     1     1
## 14 14.921     1     1
## 15 14.415     1     1
## 16 14.932     1     1
model<-aov(thick~factA+factB+factA*factB,data = df)
summary(model)
##             Df Sum Sq Mean Sq F value Pr(>F)  
## factA        1  0.403  0.4026   1.262 0.2833  
## factB        1  1.374  1.3736   4.305 0.0602 .
## factA:factB  1  0.317  0.3170   0.994 0.3386  
## Residuals   12  3.828  0.3190                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Q.6.12(b)

From the results of anova test,the p-value of interaction between Factor A and Factor B is 0.3386 which is higher than \(\alpha\) =0.05. Hence we conclude that we failed to reject the null hypothesis. We also conclude that there is no significant interaction between the two factors

Now we will perform anova test neglecting the non significant interaction effects of factor A and factor B

model1<-aov(thick~factA+factB,data = df)
summary(model1)
##             Df Sum Sq Mean Sq F value Pr(>F)  
## factA        1  0.403  0.4026   1.263 0.2815  
## factB        1  1.374  1.3736   4.308 0.0584 .
## Residuals   13  4.145  0.3189                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
coef(model)
## (Intercept)       factA       factB factA:factB 
##   14.513875   -0.158625    0.293000    0.140750
plot(model)

## hat values (leverages) are all = 0.25
##  and there are no factor predictors; no plot no. 5

From the results of anova, the p-value for Factor A(Flow rate) and Factor B (Deposition Time) is 0.2815 and 0.0584 respectively which is greater than the \(\alpha\)=0.05.Hence we conclude that we failed to reject the null hypothesis

Q.6.12(c)

The regression equation can be written as

Y=14.513875−0.158625(factA)+0.293(factB)+0.14075(AB)+Error

Q.6.12(d)

From the residual plots and normal plot we can conclude that observation 2 deviates from the normal line and also in the residual vs fitted plot

From the normal plot we can conclude that there are few outliners present in the observations which deviates from the normality. Also, variances are not constant and are widely spread

Q.6.12(e)

To deal with the outliners we may replace the particular observation with the average of the observations from that respective cell

Q.6.21

we will test first highest order interaction effects hypothesis

Null Hypothesis(H0):\(\alpha\beta\gamma\delta_{ijkl}=0\) For all ijkl

Alternative Hypothesis(Ha):\(\alpha\beta\gamma\delta_{ijkl}\neq0\) For some ijkl

library(DoE.base)
## Loading required package: grid
## Loading required package: conf.design
## Registered S3 method overwritten by 'DoE.base':
##   method           from       
##   factorize.factor conf.design
## 
## Attaching package: 'DoE.base'
## The following objects are masked from 'package:stats':
## 
##     aov, lm
## The following object is masked from 'package:graphics':
## 
##     plot.design
## The following object is masked from 'package:base':
## 
##     lengths
dist<-c(10,18,14,12.5,19,16,18.5,0,16.5,4.5,17.5,20.5,17.5,33,4,6,1,14.5,12,14,5,0,10,34,11,25.5,21.5,0,0,0,18.5,19.5,16,15,11,5,20.5,18,20,29.5,19,10,6.5,18.5,7.5,6,0,10,0,16.5,4.5,0,23.5,8,8,8,4.5,18,14.5,10,0,17.5,6,19.5,18,16,5.5,10,7,36,15,16,8.5,0,0.5,9,3,41.5,39,6.5,3.5,7,8.5,36,8,4.5,6.5,10,13,41,14,21.5,10.5,6.5,0,15.5,24,16,0,0,0,4.5,1,4,6.5,18,5,7,10,32.5,18.5,8)

lofp<-c(rep(-1,7),rep(1,7),rep(-1,7),rep(1,7),rep(-1,7),rep(1,7),rep(-1,7),rep(1,7),rep(-1,7),rep(1,7),rep(-1,7),rep(1,7),rep(-1,7),rep(1,7),rep(-1,7),rep(1,7))

tofp<- c(rep(-1,7),rep(-1,7),rep(1,7),rep(1,7),rep(-1,7),rep(-1,7),rep(1,7),rep(1,7),rep(-1,7),rep(-1,7),rep(1,7),rep(1,7),rep(-1,7),rep(-1,7),rep(1,7),rep(1,7))

bofp<-c(rep(-1,7),rep(-1,7),rep(-1,7),rep(-1,7),rep(1,7),rep(1,7),rep(1,7),rep(1,7),rep(-1,7),rep(-1,7),rep(-1,7),rep(-1,7),rep(1,7),rep(1,7),rep(1,7),rep(1,7))

sofp<-c(rep(-1,7),rep(-1,7),rep(-1,7),rep(-1,7),rep(-1,7),rep(-1,7),rep(-1,7),rep(-1,7),rep(1,7),rep(1,7),rep(1,7),rep(1,7),rep(1,7),rep(1,7),rep(1,7),rep(1,7))

df<-data.frame(dist,lofp,tofp,bofp,sofp)
df
##     dist lofp tofp bofp sofp
## 1   10.0   -1   -1   -1   -1
## 2   18.0   -1   -1   -1   -1
## 3   14.0   -1   -1   -1   -1
## 4   12.5   -1   -1   -1   -1
## 5   19.0   -1   -1   -1   -1
## 6   16.0   -1   -1   -1   -1
## 7   18.5   -1   -1   -1   -1
## 8    0.0    1   -1   -1   -1
## 9   16.5    1   -1   -1   -1
## 10   4.5    1   -1   -1   -1
## 11  17.5    1   -1   -1   -1
## 12  20.5    1   -1   -1   -1
## 13  17.5    1   -1   -1   -1
## 14  33.0    1   -1   -1   -1
## 15   4.0   -1    1   -1   -1
## 16   6.0   -1    1   -1   -1
## 17   1.0   -1    1   -1   -1
## 18  14.5   -1    1   -1   -1
## 19  12.0   -1    1   -1   -1
## 20  14.0   -1    1   -1   -1
## 21   5.0   -1    1   -1   -1
## 22   0.0    1    1   -1   -1
## 23  10.0    1    1   -1   -1
## 24  34.0    1    1   -1   -1
## 25  11.0    1    1   -1   -1
## 26  25.5    1    1   -1   -1
## 27  21.5    1    1   -1   -1
## 28   0.0    1    1   -1   -1
## 29   0.0   -1   -1    1   -1
## 30   0.0   -1   -1    1   -1
## 31  18.5   -1   -1    1   -1
## 32  19.5   -1   -1    1   -1
## 33  16.0   -1   -1    1   -1
## 34  15.0   -1   -1    1   -1
## 35  11.0   -1   -1    1   -1
## 36   5.0    1   -1    1   -1
## 37  20.5    1   -1    1   -1
## 38  18.0    1   -1    1   -1
## 39  20.0    1   -1    1   -1
## 40  29.5    1   -1    1   -1
## 41  19.0    1   -1    1   -1
## 42  10.0    1   -1    1   -1
## 43   6.5   -1    1    1   -1
## 44  18.5   -1    1    1   -1
## 45   7.5   -1    1    1   -1
## 46   6.0   -1    1    1   -1
## 47   0.0   -1    1    1   -1
## 48  10.0   -1    1    1   -1
## 49   0.0   -1    1    1   -1
## 50  16.5    1    1    1   -1
## 51   4.5    1    1    1   -1
## 52   0.0    1    1    1   -1
## 53  23.5    1    1    1   -1
## 54   8.0    1    1    1   -1
## 55   8.0    1    1    1   -1
## 56   8.0    1    1    1   -1
## 57   4.5   -1   -1   -1    1
## 58  18.0   -1   -1   -1    1
## 59  14.5   -1   -1   -1    1
## 60  10.0   -1   -1   -1    1
## 61   0.0   -1   -1   -1    1
## 62  17.5   -1   -1   -1    1
## 63   6.0   -1   -1   -1    1
## 64  19.5    1   -1   -1    1
## 65  18.0    1   -1   -1    1
## 66  16.0    1   -1   -1    1
## 67   5.5    1   -1   -1    1
## 68  10.0    1   -1   -1    1
## 69   7.0    1   -1   -1    1
## 70  36.0    1   -1   -1    1
## 71  15.0   -1    1   -1    1
## 72  16.0   -1    1   -1    1
## 73   8.5   -1    1   -1    1
## 74   0.0   -1    1   -1    1
## 75   0.5   -1    1   -1    1
## 76   9.0   -1    1   -1    1
## 77   3.0   -1    1   -1    1
## 78  41.5    1    1   -1    1
## 79  39.0    1    1   -1    1
## 80   6.5    1    1   -1    1
## 81   3.5    1    1   -1    1
## 82   7.0    1    1   -1    1
## 83   8.5    1    1   -1    1
## 84  36.0    1    1   -1    1
## 85   8.0   -1   -1    1    1
## 86   4.5   -1   -1    1    1
## 87   6.5   -1   -1    1    1
## 88  10.0   -1   -1    1    1
## 89  13.0   -1   -1    1    1
## 90  41.0   -1   -1    1    1
## 91  14.0   -1   -1    1    1
## 92  21.5    1   -1    1    1
## 93  10.5    1   -1    1    1
## 94   6.5    1   -1    1    1
## 95   0.0    1   -1    1    1
## 96  15.5    1   -1    1    1
## 97  24.0    1   -1    1    1
## 98  16.0    1   -1    1    1
## 99   0.0   -1    1    1    1
## 100  0.0   -1    1    1    1
## 101  0.0   -1    1    1    1
## 102  4.5   -1    1    1    1
## 103  1.0   -1    1    1    1
## 104  4.0   -1    1    1    1
## 105  6.5   -1    1    1    1
## 106 18.0    1    1    1    1
## 107  5.0    1    1    1    1
## 108  7.0    1    1    1    1
## 109 10.0    1    1    1    1
## 110 32.5    1    1    1    1
## 111 18.5    1    1    1    1
## 112  8.0    1    1    1    1
model<-lm(dist~lofp*tofp*bofp*sofp, data = df)
halfnormal(model)
## Warning in halfnormal.lm(model): halfnormal not recommended for models with more
## residual df than model df
## 
## Significant effects (alpha=0.05, Lenth method):
## [1] lofp e95  e28  e44  e49  tofp e84  e32  e78

model<-aov(dist~lofp*tofp*bofp*sofp, data = df)
summary(model)
##                     Df Sum Sq Mean Sq F value  Pr(>F)   
## lofp                 1    917   917.1  10.588 0.00157 **
## tofp                 1    388   388.1   4.481 0.03686 * 
## bofp                 1    145   145.1   1.676 0.19862   
## sofp                 1      1     1.4   0.016 0.89928   
## lofp:tofp            1    219   218.7   2.525 0.11538   
## lofp:bofp            1     12    11.9   0.137 0.71178   
## tofp:bofp            1    115   115.0   1.328 0.25205   
## lofp:sofp            1     94    93.8   1.083 0.30066   
## tofp:sofp            1     56    56.4   0.651 0.42159   
## bofp:sofp            1      2     1.6   0.019 0.89127   
## lofp:tofp:bofp       1      7     7.3   0.084 0.77294   
## lofp:tofp:sofp       1    113   113.0   1.305 0.25623   
## lofp:bofp:sofp       1     39    39.5   0.456 0.50121   
## tofp:bofp:sofp       1     34    33.8   0.390 0.53386   
## lofp:tofp:bofp:sofp  1     96    95.6   1.104 0.29599   
## Residuals           96   8316    86.6                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(model)

## hat values (leverages) are all = 0.1428571
##  and there are no factor predictors; no plot no. 5

Q.6.21 (a)

`From the results of anova, the p-value highest level of intraction that is lofp:tofp:bofp:sofp is 0.29599, which is greater than the \(\alpha\)=0.05.Hence we conclude that we failed to reject the null hypothesis

Also, the p-value of lofp and tofp is 0.00157 and 0.03686 respectively, which is lesser than \(\alpha\)=0.05, hence we conclude that we reject the null hypothesis and Length of put and type of put has significant effects on the putting performance.

Q.6.21 (b)

From the normal plot we can conclude that there are few outliners present in the observations which deviates from the normality. Also, variances are not constant and are widely spread. Hence we conclude that model is not adequate

Question 6.36

In the question, we have 2^4 factorial design. Hence the experiment has 2 levels of each factor and 4 number of factors without replications

library(DoE.base)
resistivity<-c(1.92,11.28,1.09,5.75,2.13,9.53,1.03,5.35,1.60,11.73,1.16,4.68,2.16,9.11,1.07,5.30)
a<-c(-1,1)
b<-c(-1,-1,1,1)
c<-c(-1,-1,-1,-1,1,1,1,1)
d<-c(-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1)
A<-c(rep(a,8))
B<-c(rep(b,4))
C<-c(rep(c,2))
D<-c(rep(d,1))
dat<-cbind(A,B,C,D,resistivity)
df<-as.data.frame(dat)
df
##     A  B  C  D resistivity
## 1  -1 -1 -1 -1        1.92
## 2   1 -1 -1 -1       11.28
## 3  -1  1 -1 -1        1.09
## 4   1  1 -1 -1        5.75
## 5  -1 -1  1 -1        2.13
## 6   1 -1  1 -1        9.53
## 7  -1  1  1 -1        1.03
## 8   1  1  1 -1        5.35
## 9  -1 -1 -1  1        1.60
## 10  1 -1 -1  1       11.73
## 11 -1  1 -1  1        1.16
## 12  1  1 -1  1        4.68
## 13 -1 -1  1  1        2.16
## 14  1 -1  1  1        9.11
## 15 -1  1  1  1        1.07
## 16  1  1  1  1        5.30
model<-lm(resistivity~A*B*C*D,data=df)
coef(model)
## (Intercept)           A           B           C           D         A:B 
##    4.680625    3.160625   -1.501875   -0.220625   -0.079375   -1.069375 
##         A:C         B:C         A:D         B:D         C:D       A:B:C 
##   -0.298125    0.229375   -0.056875   -0.046875    0.029375    0.344375 
##       A:B:D       A:C:D       B:C:D     A:B:C:D 
##   -0.096875   -0.010625    0.094375    0.141875
halfnormal(model)
## 
## Significant effects (alpha=0.05, Lenth method):
## [1] A     B     A:B   A:B:C

new_A<-as.factor(A)
new_B<-as.factor(B)
df1<-data.frame(resistivity,new_A,new_B)
df1
##    resistivity new_A new_B
## 1         1.92    -1    -1
## 2        11.28     1    -1
## 3         1.09    -1     1
## 4         5.75     1     1
## 5         2.13    -1    -1
## 6         9.53     1    -1
## 7         1.03    -1     1
## 8         5.35     1     1
## 9         1.60    -1    -1
## 10       11.73     1    -1
## 11        1.16    -1     1
## 12        4.68     1     1
## 13        2.16    -1    -1
## 14        9.11     1    -1
## 15        1.07    -1     1
## 16        5.30     1     1
model1<-aov(resistivity~new_A*new_B,data = df1)
summary(model1)
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## new_A        1 159.83  159.83  333.09 4.05e-10 ***
## new_B        1  36.09   36.09   75.21 1.63e-06 ***
## new_A:new_B  1  18.30   18.30   38.13 4.76e-05 ***
## Residuals   12   5.76    0.48                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(model1)

newdata<-log(resistivity)
df2<-data.frame(newdata,A,B,C,D)
df2
##       newdata  A  B  C  D
## 1  0.65232519 -1 -1 -1 -1
## 2  2.42303125  1 -1 -1 -1
## 3  0.08617770 -1  1 -1 -1
## 4  1.74919985  1  1 -1 -1
## 5  0.75612198 -1 -1  1 -1
## 6  2.25444472  1 -1  1 -1
## 7  0.02955880 -1  1  1 -1
## 8  1.67709656  1  1  1 -1
## 9  0.47000363 -1 -1 -1  1
## 10 2.46214966  1 -1 -1  1
## 11 0.14842001 -1  1 -1  1
## 12 1.54329811  1  1 -1  1
## 13 0.77010822 -1 -1  1  1
## 14 2.20937271  1 -1  1  1
## 15 0.06765865 -1  1  1  1
## 16 1.66770682  1  1  1  1
model2<-lm(newdata~A*B*C*D,data = df2)
coef(model2)
##  (Intercept)            A            B            C            D          A:B 
##  1.185417116  0.812870345 -0.314277554 -0.006408558 -0.018077390 -0.024684570 
##          A:C          B:C          A:D          B:D          C:D        A:B:C 
## -0.039723700 -0.004225796 -0.009578245  0.003708723  0.017780432  0.063434408 
##        A:B:D        A:C:D        B:C:D      A:B:C:D 
## -0.029875960 -0.003740235  0.003765760  0.031322043
halfnormal(model2)
## 
## Significant effects (alpha=0.05, Lenth method):
## [1] A     B     A:B:C

new_A<-as.factor(A)
new_B<-as.factor(B)
df2<-data.frame(newdata,new_A,new_B)
df2
##       newdata new_A new_B
## 1  0.65232519    -1    -1
## 2  2.42303125     1    -1
## 3  0.08617770    -1     1
## 4  1.74919985     1     1
## 5  0.75612198    -1    -1
## 6  2.25444472     1    -1
## 7  0.02955880    -1     1
## 8  1.67709656     1     1
## 9  0.47000363    -1    -1
## 10 2.46214966     1    -1
## 11 0.14842001    -1     1
## 12 1.54329811     1     1
## 13 0.77010822    -1    -1
## 14 2.20937271     1    -1
## 15 0.06765865    -1     1
## 16 1.66770682     1     1
model3<-aov(newdata~new_A*new_B,data = df2)
plot(model3)

df3<-data.frame(newdata,A,B)
df3
##       newdata  A  B
## 1  0.65232519 -1 -1
## 2  2.42303125  1 -1
## 3  0.08617770 -1  1
## 4  1.74919985  1  1
## 5  0.75612198 -1 -1
## 6  2.25444472  1 -1
## 7  0.02955880 -1  1
## 8  1.67709656  1  1
## 9  0.47000363 -1 -1
## 10 2.46214966  1 -1
## 11 0.14842001 -1  1
## 12 1.54329811  1  1
## 13 0.77010822 -1 -1
## 14 2.20937271  1 -1
## 15 0.06765865 -1  1
## 16 1.66770682  1  1
model4<-lm(newdata~A+B,data = df3)
coef(model4)
## (Intercept)           A           B 
##   1.1854171   0.8128703  -0.3142776

Question 6.36(a)

The factor effects are as follows

(Intercept) A B C D A:B A:C

4.680625 3.160625 -1.501875 -0.220625 -0.079375 -1.069375 -0.298125

B:C A:D B:D C:D A:B:C A:B:D A:C:D

0.229375 -0.056875 -0.046875 0.029375 0.344375 -0.096875 -0.010625

B:C:D A:B:C:D

0.094375 0.141875

From the halfnormal probability plot we can conclude that the factors A,B interaction AB are significatnt as these factors were deviating from the normality. We didnt considered ABC because it was almost normal Tentative model is

Resistivity= 4.680625 + 3.160625A -1.501875B -1.069375AB + \(\epsilon_{ijk}\)

From the anova test we can conclude that the factors A,B interaction AB are significatnt as these factors has p-value lesser than 0.05, hence we reject the null hypothesis

Question 6.36(b)

From the normal probability plot we can conclude that data is fairly normal as more observations are deviating from the normal line. Also, from residual plot we conclude that as variances are widely spread model is not adequate

Question 6.36(c)

From the halfnormal probability plot we can conclude that the factors A,B interaction AB are significatnt as these factors were deviating from the normality. We didnt considered ABC because it was almost normal

(Intercept) A B C D A:B

1.185417116 0.812870345 -0.314277554 -0.006408558 -0.018077390 -0.024684570

A:C B:C A:D B:D C:D A:B:C

-0.039723700 -0.004225796 -0.009578245 0.003708723 0.017780432 0.063434408

A:B:D A:C:D B:C:D A:B:C:D

-0.029875960 -0.003740235 0.003765760 0.031322043

Log(Resistivity) = 1.185417116 + 0.812870345A -0.314277554B + \(\epsilon_{ijk}\)

From the residual plots of model 3 we can conclude that variances are stabilized after log transformation without violating a normailty. Hence we can say that transformation was useful

Question 6.36(d)

model in terms of the coded variables that can be used to predict the resistivity.

log(resistivity) = 1.1854171 + 0.8128703 A - 0.3142776 B + \(\epsilon_{ijk}\)

Question 6.39

In the question, we have 2^5 factorial design. Hence the experiment has 2 levels of each factor and 5 number of factors without replications

y<-c(8.11,5.56,5.77,5.82,9.17,7.8,3.23,5.69,8.82,14.23,9.2,8.94,8.68,11.49,6.25,9.12,7.93,5,7.47,12,9.86,3.65,6.4,11.61,12.43,17.55,8.87,25.38,13.06,18.85,11.78,26.05)
a<-c(-1,1)
b<-c(-1,-1,1,1)
c<-c(-1,-1,-1,-1,1,1,1,1)
d<-c(-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1)
e<-c(-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

A<-c(rep(a,16))
B<-c(rep(b,8))
C<-c(rep(c,4))
D<-c(rep(d,2))
E<-c(rep(e,1))

dat<-cbind(A,B,C,D,E,y)

df<-as.data.frame(dat)
df
##     A  B  C  D  E     y
## 1  -1 -1 -1 -1 -1  8.11
## 2   1 -1 -1 -1 -1  5.56
## 3  -1  1 -1 -1 -1  5.77
## 4   1  1 -1 -1 -1  5.82
## 5  -1 -1  1 -1 -1  9.17
## 6   1 -1  1 -1 -1  7.80
## 7  -1  1  1 -1 -1  3.23
## 8   1  1  1 -1 -1  5.69
## 9  -1 -1 -1  1 -1  8.82
## 10  1 -1 -1  1 -1 14.23
## 11 -1  1 -1  1 -1  9.20
## 12  1  1 -1  1 -1  8.94
## 13 -1 -1  1  1 -1  8.68
## 14  1 -1  1  1 -1 11.49
## 15 -1  1  1  1 -1  6.25
## 16  1  1  1  1 -1  9.12
## 17 -1 -1 -1 -1  1  7.93
## 18  1 -1 -1 -1  1  5.00
## 19 -1  1 -1 -1  1  7.47
## 20  1  1 -1 -1  1 12.00
## 21 -1 -1  1 -1  1  9.86
## 22  1 -1  1 -1  1  3.65
## 23 -1  1  1 -1  1  6.40
## 24  1  1  1 -1  1 11.61
## 25 -1 -1 -1  1  1 12.43
## 26  1 -1 -1  1  1 17.55
## 27 -1  1 -1  1  1  8.87
## 28  1  1 -1  1  1 25.38
## 29 -1 -1  1  1  1 13.06
## 30  1 -1  1  1  1 18.85
## 31 -1  1  1  1  1 11.78
## 32  1  1  1  1  1 26.05
library(DoE.base)
model<-lm(y~A*B*C*D*E,data = df)
coef(model)
## (Intercept)           A           B           C           D           E 
##  10.1803125   1.6159375   0.0434375  -0.0121875   2.9884375   2.1878125 
##         A:B         A:C         B:C         A:D         B:D         C:D 
##   1.2365625  -0.0015625  -0.1953125   1.6665625  -0.0134375   0.0034375 
##         A:E         B:E         C:E         D:E       A:B:C       A:B:D 
##   1.0271875   1.2834375   0.3015625   1.3896875   0.2503125  -0.3453125 
##       A:C:D       B:C:D       A:B:E       A:C:E       B:C:E       A:D:E 
##  -0.0634375   0.3053125   1.1853125  -0.2590625   0.1709375   0.9015625 
##       B:D:E       C:D:E     A:B:C:D     A:B:C:E     A:B:D:E     A:C:D:E 
##  -0.0396875   0.3959375  -0.0740625  -0.1846875   0.4071875   0.1278125 
##     B:C:D:E   A:B:C:D:E 
##  -0.0746875  -0.3553125
halfnormal(model)
## 
## Significant effects (alpha=0.05, Lenth method):
##  [1] D     E     A:D   A     D:E   B:E   A:B   A:B:E A:E   A:D:E

Question 6.39(a)

From the half normal plot we can conclude that significant effects are ADE,AE,ABE,AB,BE,DE,A,AD,E,D.

Question 6.39(b)

Now lets find the residuals and examine the model adequacy of the experiment

A<-as.fixed(A)
B<-as.fixed(B)
D<-as.fixed(D)
E<-as.fixed(E)
df5<-data.frame(A,B,D,y)
df5
##     A  B  D     y
## 1  -1 -1 -1  8.11
## 2   1 -1 -1  5.56
## 3  -1  1 -1  5.77
## 4   1  1 -1  5.82
## 5  -1 -1 -1  9.17
## 6   1 -1 -1  7.80
## 7  -1  1 -1  3.23
## 8   1  1 -1  5.69
## 9  -1 -1  1  8.82
## 10  1 -1  1 14.23
## 11 -1  1  1  9.20
## 12  1  1  1  8.94
## 13 -1 -1  1  8.68
## 14  1 -1  1 11.49
## 15 -1  1  1  6.25
## 16  1  1  1  9.12
## 17 -1 -1 -1  7.93
## 18  1 -1 -1  5.00
## 19 -1  1 -1  7.47
## 20  1  1 -1 12.00
## 21 -1 -1 -1  9.86
## 22  1 -1 -1  3.65
## 23 -1  1 -1  6.40
## 24  1  1 -1 11.61
## 25 -1 -1  1 12.43
## 26  1 -1  1 17.55
## 27 -1  1  1  8.87
## 28  1  1  1 25.38
## 29 -1 -1  1 13.06
## 30  1 -1  1 18.85
## 31 -1  1  1 11.78
## 32  1  1  1 26.05
modeln<-aov(y~A+B+D+E+A*B+D*E+A*D+A*E+B*E+A*B*E+A*D*E,data=df5)
plot(modeln)

From the normal probability plot we can conclude that data is fairly normal as more observations are deviating from the normal line. Also, from residual plot we conclude that as variances are widely spread model is not adequate

Question 6.39(c)

From the halfnormal plot factor c is not significant, hence we will drop factor c

A<-as.fixed(A)
B<-as.fixed(B)
D<-as.fixed(D)
E<-as.fixed(E)
df6<-data.frame(A,B,D,y)
df6
##     A  B  D     y
## 1  -1 -1 -1  8.11
## 2   1 -1 -1  5.56
## 3  -1  1 -1  5.77
## 4   1  1 -1  5.82
## 5  -1 -1 -1  9.17
## 6   1 -1 -1  7.80
## 7  -1  1 -1  3.23
## 8   1  1 -1  5.69
## 9  -1 -1  1  8.82
## 10  1 -1  1 14.23
## 11 -1  1  1  9.20
## 12  1  1  1  8.94
## 13 -1 -1  1  8.68
## 14  1 -1  1 11.49
## 15 -1  1  1  6.25
## 16  1  1  1  9.12
## 17 -1 -1 -1  7.93
## 18  1 -1 -1  5.00
## 19 -1  1 -1  7.47
## 20  1  1 -1 12.00
## 21 -1 -1 -1  9.86
## 22  1 -1 -1  3.65
## 23 -1  1 -1  6.40
## 24  1  1 -1 11.61
## 25 -1 -1  1 12.43
## 26  1 -1  1 17.55
## 27 -1  1  1  8.87
## 28  1  1  1 25.38
## 29 -1 -1  1 13.06
## 30  1 -1  1 18.85
## 31 -1  1  1 11.78
## 32  1  1  1 26.05
modeln1<-aov(y~A*B*D*E,data=df6)
GAD::gad(modeln1)
## Analysis of Variance Table
## 
## Response: y
##          Df  Sum Sq Mean Sq  F value    Pr(>F)    
## A         1  83.560  83.560  57.2328 1.136e-06 ***
## B         1   0.060   0.060   0.0414 0.8414184    
## D         1 285.784 285.784 195.7422 2.161e-10 ***
## E         1 153.169 153.169 104.9099 1.966e-08 ***
## A:B       1  48.931  48.931  33.5142 2.767e-05 ***
## A:D       1  88.878  88.878  60.8751 7.661e-07 ***
## B:D       1   0.006   0.006   0.0040 0.9506177    
## A:E       1  33.764  33.764  23.1257 0.0001928 ***
## B:E       1  52.711  52.711  36.1032 1.822e-05 ***
## D:E       1  61.799  61.799  42.3283 7.243e-06 ***
## A:B:D     1   3.816   3.816   2.6135 0.1255014    
## A:B:E     1  44.959  44.959  30.7937 4.402e-05 ***
## A:D:E     1  26.010  26.010  17.8151 0.0006496 ***
## B:D:E     1   0.050   0.050   0.0345 0.8549347    
## A:B:D:E   1   5.306   5.306   3.6340 0.0747350 .  
## Residual 16  23.360   1.460                       
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

From the result the p-value of higher order interaction is 0.0747350 which is greater than the 0.05, hence we failed to reject the null hypothesis which confirm our result in part a

Question 6.39(d)

The greatest reading of y are 26.05 and 25.38.

Factor A,B,D and E are significant factors hence, the settings of the active factors that maximize the predicted response will be

FactorA = +1, FactorB = +1, FactorD = +1, Factor E= +1