# Null Hypothesis(H0): (alpha)_i = 0 for all i
# Alternate Hypothesis(Ha): (alpha)_i != 0 for some i
# Null Hypothesis(H0): (beta)_j = 0 for all j
# Alternate Hypothesis(Ha): (beta)_j != 0 for some j
# Null Hypothesis(H0): (alpha)_i*(beta)_j = 0 for all i,j
# Alternate Hypothesis(Ha): (alpha)_i*(beta)_j != 0 for some i,j
r<- c(21,22,25,26,23,28,24,25,20,26,29,27,37,39,31,34,38,38,29,33,35,36,30,35)
t <- rep(c(-1,1,-1,1),6)
m<- rep(c(-1,-1,1,1),6)
mod <- aov(r~t*m)
summary(mod)
## Df Sum Sq Mean Sq F value Pr(>F)
## t 1 30.4 30.37 0.806 0.380
## m 1 9.4 9.38 0.249 0.623
## t:m 1 0.4 0.37 0.010 0.922
## Residuals 20 753.5 37.67
mod <- aov(r~t+m)
summary(mod)
## Df Sum Sq Mean Sq F value Pr(>F)
## t 1 30.4 30.37 0.846 0.368
## m 1 9.4 9.38 0.261 0.615
## Residuals 21 753.9 35.90
plot(mod)
## hat values (leverages) are all = 0.125
## and there are no factor predictors; no plot no. 5
# Null Hypothesis(H0): (alpha)_i = 0 for all i
# Alternate Hypothesis(Ha): (alpha)_i != 0 for some i
# Null Hypothesis(H0): (beta)_j = 0 for all j
# Alternate Hypothesis(Ha): (beta)_j != 0 for some j
# Null Hypothesis(H0): (alpha)_i*(beta)_j = 0 for all i,j
# Alternate Hypothesis(Ha): (alpha)_i*(beta)_j != 0 for some i,j
# a)
observations <- c(14.037,13.880,14.821,14.888,16.165,13.860,14.757,14.921,13.972,14.032,14.843,14.415,13.907,13.914,14.878,14.932)
x <- rep(c(-1,1,-1,1),4)
y <- rep(c(-1,-1,1,1),4)
experiment <- aov(observations~x+y+x*y)
summary(experiment)
## Df Sum Sq Mean Sq F value Pr(>F)
## x 1 0.403 0.4026 1.262 0.2833
## y 1 1.374 1.3736 4.305 0.0602 .
## x:y 1 0.317 0.3170 0.994 0.3386
## Residuals 12 3.828 0.3190
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
coef(experiment)
## (Intercept) x y x:y
## 14.513875 -0.158625 0.293000 0.140750
xyexperiment <- aov(observations~x+y)
summary(xyexperiment)
## Df Sum Sq Mean Sq F value Pr(>F)
## x 1 0.403 0.4026 1.263 0.2815
## y 1 1.374 1.3736 4.308 0.0584 .
## Residuals 13 4.145 0.3189
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(experiment)
## hat values (leverages) are all = 0.25
## and there are no factor predictors; no plot no. 5
# Null Hypothesis(H0): (alpha)_i = 0 for all i
# Alternate Hypothesis(Ha): (alpha)_i != 0 for some i
# Null Hypothesis(H0): (beta)_j = 0 for all j
# Alternate Hypothesis(Ha): (beta)_j != 0 for some j
# Null Hypothesis(H0): (gamma)_k = 0 for all k
# Alternate Hypothesis(Ha): (gamma)_k != 0 for some k
# Null Hypothesis(H0): (delta)_l = 0 for all l
# Alternate Hypothesis(Ha): (delta)_l != 0 for some l
l <- rep(c(-1,1,-1,1),28)
t <- rep(c(-1,-1,1,1),28)
x <- rep(c(-1,-1,-1,-1,1,1,1,1),14)
s <- rep(c(rep(-1,8),rep(1,8)),7)
r <- c(10.0,0.0,4.0,0.0,0.0,5.0,6.5,16.5,4.5,19.5,15.0,41.5,8.0,21.5,0.0,18.0,
18.0,16.5,6.0,10.0,0.0,20.5,18.5,4.5,18.0,18.0,16.0,39.0,4.5,10.5,0.0,5.0,
14.0,4.5,1.0,34.0,18.5,18.0,7.5,0.0,14.5,16.0,8.5,6.5,6.5,6.5,0.0,7.0,
12.5,17.5,14.5,11.0,19.5,20.0,6.0,23.5,10.0,5.5,0.0,3.5,10.0,0.0,4.5,10.0,
19.0,20.5,12.0,25.5,16.0,29.5,0.0,8.0,0.0,10.0,0.5,7.0,13.0,15.5,1.0,32.5,
16.0,17.5,14.0,21.5,15.0,19.0,10.0,8.0,17.5,7.0,9.0,8.5,41.0,24.0,4.0,18.5,
18.5,33.0,5.0,0.0,11.0,10.0,0.0,8.0,6.0,36.0,3.0,36.0,14.0,16.0,6.5,8.0)
model <- aov(r~l*t*x*s)
summary(model)
## Df Sum Sq Mean Sq F value Pr(>F)
## l 1 917 917.1 10.588 0.00157 **
## t 1 388 388.1 4.481 0.03686 *
## x 1 145 145.1 1.676 0.19862
## s 1 1 1.4 0.016 0.89928
## l:t 1 219 218.7 2.525 0.11538
## l:x 1 12 11.9 0.137 0.71178
## t:x 1 115 115.0 1.328 0.25205
## l:s 1 94 93.8 1.083 0.30066
## t:s 1 56 56.4 0.651 0.42159
## x:s 1 2 1.6 0.019 0.89127
## l:t:x 1 7 7.3 0.084 0.77294
## l:t:s 1 113 113.0 1.305 0.25623
## l:x:s 1 39 39.5 0.456 0.50121
## t:x:s 1 34 33.8 0.390 0.53386
## l:t:x:s 1 96 95.6 1.104 0.29599
## Residuals 96 8316 86.6
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(model)
## hat values (leverages) are all = 0.1428571
## and there are no factor predictors; no plot no. 5
# Null Hypothesis(H0): (alpha)_i = 0 for all i
# Alternate Hypothesis(Ha): (alpha)_i != 0 for some i
# Null Hypothesis(H0): (beta)_j = 0 for all j
# Alternate Hypothesis(Ha): (beta)_j != 0 for some j
# Null Hypothesis(H0): (gamma)_k = 0 for all k
# Alternate Hypothesis(Ha): (gamma)_k != 0 for some k
# Null Hypothesis(H0): (delta)_l = 0 for all l
# Alternate Hypothesis(Ha): (delta)_l != 0 for some l
A <- rep(c(-1,1,-1,1),4)
B <- rep(c(-1,-1,1,1),4)
C <- rep(c(-1,-1,-1,-1,1,1,1,1),2)
D <- c(rep(-1,8),rep(1,8))
resistivity <- c(1.92,11.28,1.09,5.75,2.13,9.53,1.03,5.35,1.60,11.73,1.16,4.68,2.16,9.11,1.07,5.30)
library(DoE.base)
## Loading required package: grid
## Loading required package: conf.design
## Registered S3 method overwritten by 'DoE.base':
## method from
## factorize.factor conf.design
##
## Attaching package: 'DoE.base'
## The following objects are masked from 'package:stats':
##
## aov, lm
## The following object is masked from 'package:graphics':
##
## plot.design
## The following object is masked from 'package:base':
##
## lengths
model <- aov(resistivity~A*B*C*D)
summary(model)
## Df Sum Sq Mean Sq
## A 1 159.83 159.83
## B 1 36.09 36.09
## C 1 0.78 0.78
## D 1 0.10 0.10
## A:B 1 18.30 18.30
## A:C 1 1.42 1.42
## B:C 1 0.84 0.84
## A:D 1 0.05 0.05
## B:D 1 0.04 0.04
## C:D 1 0.01 0.01
## A:B:C 1 1.90 1.90
## A:B:D 1 0.15 0.15
## A:C:D 1 0.00 0.00
## B:C:D 1 0.14 0.14
## A:B:C:D 1 0.32 0.32
coef(model)
## (Intercept) A B C D A:B
## 4.680625 3.160625 -1.501875 -0.220625 -0.079375 -1.069375
## A:C B:C A:D B:D C:D A:B:C
## -0.298125 0.229375 -0.056875 -0.046875 0.029375 0.344375
## A:B:D A:C:D B:C:D A:B:C:D
## -0.096875 -0.010625 0.094375 0.141875
halfnormal(model)
##
## Significant effects (alpha=0.05, Lenth method):
## [1] A B A:B A:B:C
model1 <- aov(resistivity~A+B+C+A*B+A*B*C)
summary(model1)
## Df Sum Sq Mean Sq F value Pr(>F)
## A 1 159.83 159.83 1563.061 1.84e-10 ***
## B 1 36.09 36.09 352.937 6.66e-08 ***
## C 1 0.78 0.78 7.616 0.02468 *
## A:B 1 18.30 18.30 178.933 9.33e-07 ***
## A:C 1 1.42 1.42 13.907 0.00579 **
## B:C 1 0.84 0.84 8.232 0.02085 *
## A:B:C 1 1.90 1.90 18.556 0.00259 **
## Residuals 8 0.82 0.10
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(model1)
## hat values (leverages) are all = 0.5
## and there are no factor predictors; no plot no. 5
trans<- log(resistivity)
trans_model <- aov(trans~A*B*C*D)
summary(trans_model)
## Df Sum Sq Mean Sq
## A 1 10.572 10.572
## B 1 1.580 1.580
## C 1 0.001 0.001
## D 1 0.005 0.005
## A:B 1 0.010 0.010
## A:C 1 0.025 0.025
## B:C 1 0.000 0.000
## A:D 1 0.001 0.001
## B:D 1 0.000 0.000
## C:D 1 0.005 0.005
## A:B:C 1 0.064 0.064
## A:B:D 1 0.014 0.014
## A:C:D 1 0.000 0.000
## B:C:D 1 0.000 0.000
## A:B:C:D 1 0.016 0.016
halfnormal(trans_model)
##
## Significant effects (alpha=0.05, Lenth method):
## [1] A B A:B:C
trans_model1 <- aov(trans~A+B+C+A*B*C)
summary(trans_model1)
## Df Sum Sq Mean Sq F value Pr(>F)
## A 1 10.572 10.572 1994.556 6.98e-11 ***
## B 1 1.580 1.580 298.147 1.29e-07 ***
## C 1 0.001 0.001 0.124 0.73386
## A:B 1 0.010 0.010 1.839 0.21207
## A:C 1 0.025 0.025 4.763 0.06063 .
## B:C 1 0.000 0.000 0.054 0.82223
## A:B:C 1 0.064 0.064 12.147 0.00826 **
## Residuals 8 0.042 0.005
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(trans_model1)
## hat values (leverages) are all = 0.5
## and there are no factor predictors; no plot no. 5
library(DoE.base)
A <- rep(c(-1,1),16)
B <- rep(c(-1,-1,1,1),8)
C <- rep(c(rep(-1,4),rep(1,4)),4)
D <- rep(c(rep(-1,8),rep(1,8)),2)
E <- c(rep(-1,16),rep(1,16))
data1<-data.frame(A,B,C,D,E)
observation<-c(8.11,5.56,5.77,5.82,9.17,7.8,3.23,5.69,8.82,14.23,9.2,8.94,8.68,11.49,6.25,9.12,7.93,5,7.47,12,9.86,3.65,6.4,11.61,12.43,17.55,8.87,25.38,13.06,18.85,11.78,26.05)
m1<-aov(observation~A*B*C*D*E,data = data1)
halfnormal(m1)
##
## Significant effects (alpha=0.05, Lenth method):
## [1] D E A:D A D:E B:E A:B A:B:E A:E A:D:E
m2<-aov(observation~A*B*D*E)
summary(m2)
## Df Sum Sq Mean Sq F value Pr(>F)
## A 1 83.56 83.56 57.233 1.14e-06 ***
## B 1 0.06 0.06 0.041 0.841418
## D 1 285.78 285.78 195.742 2.16e-10 ***
## E 1 153.17 153.17 104.910 1.97e-08 ***
## A:B 1 48.93 48.93 33.514 2.77e-05 ***
## A:D 1 88.88 88.88 60.875 7.66e-07 ***
## B:D 1 0.01 0.01 0.004 0.950618
## A:E 1 33.76 33.76 23.126 0.000193 ***
## B:E 1 52.71 52.71 36.103 1.82e-05 ***
## D:E 1 61.80 61.80 42.328 7.24e-06 ***
## A:B:D 1 3.82 3.82 2.613 0.125501
## A:B:E 1 44.96 44.96 30.794 4.40e-05 ***
## A:D:E 1 26.01 26.01 17.815 0.000650 ***
## B:D:E 1 0.05 0.05 0.035 0.854935
## A:B:D:E 1 5.31 5.31 3.634 0.074735 .
## Residuals 16 23.36 1.46
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
coef(m2)
## (Intercept) A B D E A:B
## 10.1803125 1.6159375 0.0434375 2.9884375 2.1878125 1.2365625
## A:D B:D A:E B:E D:E A:B:D
## 1.6665625 -0.0134375 1.0271875 1.2834375 1.3896875 -0.3453125
## A:B:E A:D:E B:D:E A:B:D:E
## 1.1853125 0.9015625 -0.0396875 0.4071875
plot(m2)
## hat values (leverages) are all = 0.5
## and there are no factor predictors; no plot no. 5
##Difference between them is 2ˆ5 Factorial Design and 2ˆ4 Factorial Design.