CultureMedium <- c(1,1,2,2,1,1,2,2,1,1,2,2,1,1,2,2,1,1,2,2,1,1,2,2)
Time <- c(rep(12,12),rep(18,12))
Values <- c(21,22,25,26,23,28,24,25,20,26,29,27,37,39,31,34,38,38,29,33,35,36,30,35)
interaction.plot(CultureMedium,Time,Values)
Time <- as.fixed(Time)
CultureMedium <- as.fixed(CultureMedium)
Dat1 <- data.frame (Time, CultureMedium, Values)
Dat.Model6.8 <- lm(Values~Time*CultureMedium, data = Dat1)
Dat.Model6.8b <- aov(Dat.Model6.8)
summary(Dat.Model6.8b)
## Df Sum Sq Mean Sq F value Pr(>F)
## Time 1 590.0 590.0 115.506 9.29e-10 ***
## CultureMedium 1 9.4 9.4 1.835 0.190617
## Time:CultureMedium 1 92.0 92.0 18.018 0.000397 ***
## Residuals 20 102.2 5.1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(Dat.Model6.8b)
DepositionTime <- c(rep(-1,4),rep(-1,4),rep(1,4),rep(1,4))
ArsenicFlowRate <- c(rep(-1,4),rep(1,4),rep(-1,4),rep(1,4))
Thickness <- c(14.037,16.165,13.972,13.907,13.880,13.860,14.032,13.914,14.821,14.757,14.843,14.878,14.888,14.921,14.415,14.932)
Dat2 <- data.frame(ArsenicFlowRate,DepositionTime,Thickness)
DepositionTime <- as.fixed(DepositionTime)
ArsenicFlowRate <- as.fixed(ArsenicFlowRate)
Dat.Model6.12 <- lm(Thickness~ArsenicFlowRate*DepositionTime, data = Dat2)
coef(Dat.Model6.12)
## (Intercept) ArsenicFlowRate
## 14.513875 -0.158625
## DepositionTime ArsenicFlowRate:DepositionTime
## 0.293000 0.140750
Dat.Model6.12b <- aov(Dat.Model6.12)
summary(Dat.Model6.12b)
## Df Sum Sq Mean Sq F value Pr(>F)
## ArsenicFlowRate 1 0.403 0.4026 1.262 0.2833
## DepositionTime 1 1.374 1.3736 4.305 0.0602 .
## ArsenicFlowRate:DepositionTime 1 0.317 0.3170 0.994 0.3386
## Residuals 12 3.828 0.3190
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(Dat.Model6.12b)
## hat values (leverages) are all = 0.25
## and there are no factor predictors; no plot no. 5
Typeofputter <- c(rep(-1,7),rep(-1,7),rep(1,7),rep(1,7),rep(-1,7),rep(-1,7),rep(1,7),rep(1,7),rep(-1,7),rep(-1,7),rep(1,7),rep(1,7),rep(-1,7),rep(-1,7),rep(1,7),rep(1,7))
LengthofPutt <- c(rep(-1,7),rep(1,7),rep(-1,7),rep(1,7),rep(-1,7),rep(1,7),rep(-1,7),rep(1,7),rep(-1,7),rep(1,7),rep(-1,7),rep(1,7),rep(-1,7),rep(1,7),rep(-1,7),rep(1,7))
Slopeofputt <- c(rep(-1,7),rep(-1,7),rep(-1,7),rep(-1,7),rep(-1,7),rep(-1,7),rep(-1,7),rep(-1,7),rep(1,7),rep(1,7),rep(1,7),rep(1,7),rep(1,7),rep(1,7),rep(1,7),rep(1,7))
Breakofputt <- c(rep(-1,7),rep(-1,7),rep(-1,7),rep(-1,7),rep(1,7),rep(1,7),rep(1,7),rep(1,7),rep(-1,7),rep(-1,7),rep(-1,7),rep(-1,7),rep(1,7),rep(1,7),rep(1,7),rep(1,7))
DistancefromCup <- c(10,18,14,12.5,19,16,18.5, 0,16.5,4.5,17.5,20.5,17.5,33, 4,6,1,14.5,12,14,5, 0,10,34,11,25.5,21.5,0, 0,0,18.5,19.5,16,15,11, 5,20.5,18,20,29.5,19,10, 6.5,18.5,7.5,6,0,10,0, 16.5,4.5,0,23.5,8,8,8, 4.5,18,14.5,10,0,17.5,6, 19.5,18,16,5.5,10,7,36, 15,16,8.5,0,0.5,9,3, 41.5,39,6.5,3.5,7,8.5,36, 8,4.5,6.5,10,13,41,14, 21.5,10.5,6.5,0,15.5,24,16, 0,0,0,4.5,1,4,6.5, 18,5,7,10,32.5,18.5,8)
Typeofputter <- as.fixed(Typeofputter)
LengthofPutt <- as.fixed(LengthofPutt)
Slopeofputt <- as.fixed(Slopeofputt)
Breakofputt <- as.fixed(Breakofputt)
Dat3 <- data.frame(LengthofPutt, Typeofputter, Breakofputt, Slopeofputt, DistancefromCup)
Dat.Model6.21 <- lm(DistancefromCup~LengthofPutt*Typeofputter*Breakofputt*Slopeofputt, data = Dat3)
coef(Dat.Model6.21)
## (Intercept)
## 15.4285714
## LengthofPutt1
## 0.2142857
## Typeofputter1
## -7.3571429
## Breakofputt1
## -4.0000000
## Slopeofputt1
## -5.3571429
## LengthofPutt1:Typeofputter1
## 6.2857143
## LengthofPutt1:Breakofputt1
## 5.7857143
## Typeofputter1:Breakofputt1
## 2.8571429
## LengthofPutt1:Slopeofputt1
## 5.7142857
## Typeofputter1:Slopeofputt1
## 4.7142857
## Breakofputt1:Slopeofputt1
## 7.7857143
## LengthofPutt1:Typeofputter1:Breakofputt1
## -9.4285714
## LengthofPutt1:Typeofputter1:Slopeofputt1
## 0.6428571
## LengthofPutt1:Breakofputt1:Slopeofputt1
## -12.1428571
## Typeofputter1:Breakofputt1:Slopeofputt1
## -11.7857143
## LengthofPutt1:Typeofputter1:Breakofputt1:Slopeofputt1
## 14.7857143
Dat.Model6.21a <- aov(Dat.Model6.21)
gad(Dat.Model6.21a)
## Analysis of Variance Table
##
## Response: DistancefromCup
## Df Sum Sq Mean Sq F value
## LengthofPutt 1 917.1 917.15 10.5878
## Typeofputter 1 388.1 388.15 4.4809
## Breakofputt 1 145.1 145.15 1.6756
## Slopeofputt 1 1.4 1.40 0.0161
## LengthofPutt:Typeofputter 1 218.7 218.68 2.5245
## LengthofPutt:Breakofputt 1 11.9 11.90 0.1373
## Typeofputter:Breakofputt 1 115.0 115.02 1.3278
## LengthofPutt:Slopeofputt 1 93.8 93.81 1.0829
## Typeofputter:Slopeofputt 1 56.4 56.43 0.6515
## Breakofputt:Slopeofputt 1 1.6 1.63 0.0188
## LengthofPutt:Typeofputter:Breakofputt 1 7.3 7.25 0.0837
## LengthofPutt:Typeofputter:Slopeofputt 1 113.0 113.00 1.3045
## LengthofPutt:Breakofputt:Slopeofputt 1 39.5 39.48 0.4558
## Typeofputter:Breakofputt:Slopeofputt 1 33.8 33.77 0.3899
## LengthofPutt:Typeofputter:Breakofputt:Slopeofputt 1 95.6 95.65 1.1042
## Residual 96 8315.8 86.62
## Pr(>F)
## LengthofPutt 0.001572 **
## Typeofputter 0.036862 *
## Breakofputt 0.198615
## Slopeofputt 0.899280
## LengthofPutt:Typeofputter 0.115377
## LengthofPutt:Breakofputt 0.711776
## Typeofputter:Breakofputt 0.252054
## LengthofPutt:Slopeofputt 0.300658
## Typeofputter:Slopeofputt 0.421588
## Breakofputt:Slopeofputt 0.891271
## LengthofPutt:Typeofputter:Breakofputt 0.772939
## LengthofPutt:Typeofputter:Slopeofputt 0.256228
## LengthofPutt:Breakofputt:Slopeofputt 0.501207
## Typeofputter:Breakofputt:Slopeofputt 0.533858
## LengthofPutt:Typeofputter:Breakofputt:Slopeofputt 0.295994
## Residual
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(Dat.Model6.21a)
Dat.Model6.21b <- lm(DistancefromCup~LengthofPutt*Typeofputter, data = Dat3)
plot(Dat.Model6.21b)
interaction.plot(LengthofPutt,Typeofputter,DistancefromCup)
### (b.) Therefore, we clearly see that in both the cases the NPP plot is not normal & has some outliers. Also the assumption of equality of variances is not satisfied in both sets of residual plots as well. so the model isn’t adequate.
A<-rep(c(-1,1),8)
B<-rep(c(-1,-1,1,1),4)
C<-rep(c(rep(-1,4),rep(1,4)),2)
D<-c(rep(-1,8),rep(1,8))
Resistivity<-c(1.92,11.28,1.09,5.75,2.13,9.53,1.03,5.35,1.60,11.73,1.16,4.68,2.16,9.11,1.07,5.30)
Dat4<-data.frame(A,B,C,D,Resistivity)
Dat4
## A B C D Resistivity
## 1 -1 -1 -1 -1 1.92
## 2 1 -1 -1 -1 11.28
## 3 -1 1 -1 -1 1.09
## 4 1 1 -1 -1 5.75
## 5 -1 -1 1 -1 2.13
## 6 1 -1 1 -1 9.53
## 7 -1 1 1 -1 1.03
## 8 1 1 1 -1 5.35
## 9 -1 -1 -1 1 1.60
## 10 1 -1 -1 1 11.73
## 11 -1 1 -1 1 1.16
## 12 1 1 -1 1 4.68
## 13 -1 -1 1 1 2.16
## 14 1 -1 1 1 9.11
## 15 -1 1 1 1 1.07
## 16 1 1 1 1 5.30
Dat.Model6.36 <- lm(Resistivity~A*B*C*D, data=Dat4)
coef(Dat.Model6.36)
## (Intercept) A B C D A:B
## 4.680625 3.160625 -1.501875 -0.220625 -0.079375 -1.069375
## A:C B:C A:D B:D C:D A:B:C
## -0.298125 0.229375 -0.056875 -0.046875 0.029375 0.344375
## A:B:D A:C:D B:C:D A:B:C:D
## -0.096875 -0.010625 0.094375 0.141875
halfnormal(Dat.Model6.36)
##
## Significant effects (alpha=0.05, Lenth method):
## [1] A B A:B A:B:C
Anew <- as.fixed(A)
Bnew <- as.fixed(B)
Dat4new <- data.frame(Anew,Bnew,Resistivity)
Dat.Model6.36b <- aov(Resistivity~Anew*Bnew, data=Dat4new)
GAD::gad(Dat.Model6.36b)
## Analysis of Variance Table
##
## Response: Resistivity
## Df Sum Sq Mean Sq F value Pr(>F)
## Anew 1 159.833 159.833 333.088 4.049e-10 ***
## Bnew 1 36.090 36.090 75.211 1.630e-06 ***
## Anew:Bnew 1 18.297 18.297 38.130 4.763e-05 ***
## Residual 12 5.758 0.480
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(Dat.Model6.36b)
Lresistivity <- log(Resistivity)
Dat4c<-data.frame(A,B,C,D,Resistivity)
Dat.Model6.36c <- lm(Resistivity~A*B*C*D, data=Dat4c)
coef(Dat.Model6.36c)
## (Intercept) A B C D A:B
## 4.680625 3.160625 -1.501875 -0.220625 -0.079375 -1.069375
## A:C B:C A:D B:D C:D A:B:C
## -0.298125 0.229375 -0.056875 -0.046875 0.029375 0.344375
## A:B:D A:C:D B:C:D A:B:C:D
## -0.096875 -0.010625 0.094375 0.141875
halfnormal(Dat.Model6.36c)
##
## Significant effects (alpha=0.05, Lenth method):
## [1] A B A:B A:B:C
Anewc <- as.fixed(A)
Bnewc <- as.fixed(B)
Dat4newc <- data.frame(Anewc,Bnewc,Lresistivity)
Dat.Model6.36bc <- aov(Lresistivity~Anewc+Bnewc, data=Dat4newc)
GAD::gad(Dat.Model6.36bc)
## Analysis of Variance Table
##
## Response: Lresistivity
## Df Sum Sq Mean Sq F value Pr(>F)
## Anewc 1 10.5721 10.5721 962.95 1.408e-13 ***
## Bnewc 1 1.5803 1.5803 143.94 2.095e-08 ***
## Residual 13 0.1427 0.0110
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(Dat.Model6.36bc)
Dat4newcb <- data.frame(Anew,Bnew,Lresistivity)
Dat.Model6.36bcb <- aov(Lresistivity~Anew+Bnew, data=Dat4newcb)
GAD::gad(Dat.Model6.36bcb)
## Analysis of Variance Table
##
## Response: Lresistivity
## Df Sum Sq Mean Sq F value Pr(>F)
## Anew 1 10.5721 10.5721 962.95 1.408e-13 ***
## Bnew 1 1.5803 1.5803 143.94 2.095e-08 ***
## Residual 13 0.1427 0.0110
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(Dat.Model6.36bcb)
Dat4d <- data.frame(Lresistivity,A,B)
Dat.Model6.36d <- lm(Lresistivity~A+B, data=Dat4d)
coef(Dat.Model6.36d)
## (Intercept) A B
## 1.1854171 0.8128703 -0.3142776
A<-rep(c(-1,1),16)
B<-rep(c(rep(-1,2),rep(1,2)),8)
C<-rep(c(rep(-1,4),rep(1,4)),4)
D<-rep(c(rep(-1,8),rep(1,8)),2)
E<-c(rep(-1,16),rep(1,16))
y<-c(8.11,5.56,5.77,5.82,9.17,7.8,3.23,5.69,8.82,14.23,9.2,8.94,8.68,11.49,6.25,9.12,7.93,5,7.47,12,9.86,3.65,6.4,11.61,12.43,17.55,8.87,25.38,13.08,18.85,11.78,26.05)
Dat5<-data.frame(A,B,C,D,E,y)
Dat5
## A B C D E y
## 1 -1 -1 -1 -1 -1 8.11
## 2 1 -1 -1 -1 -1 5.56
## 3 -1 1 -1 -1 -1 5.77
## 4 1 1 -1 -1 -1 5.82
## 5 -1 -1 1 -1 -1 9.17
## 6 1 -1 1 -1 -1 7.80
## 7 -1 1 1 -1 -1 3.23
## 8 1 1 1 -1 -1 5.69
## 9 -1 -1 -1 1 -1 8.82
## 10 1 -1 -1 1 -1 14.23
## 11 -1 1 -1 1 -1 9.20
## 12 1 1 -1 1 -1 8.94
## 13 -1 -1 1 1 -1 8.68
## 14 1 -1 1 1 -1 11.49
## 15 -1 1 1 1 -1 6.25
## 16 1 1 1 1 -1 9.12
## 17 -1 -1 -1 -1 1 7.93
## 18 1 -1 -1 -1 1 5.00
## 19 -1 1 -1 -1 1 7.47
## 20 1 1 -1 -1 1 12.00
## 21 -1 -1 1 -1 1 9.86
## 22 1 -1 1 -1 1 3.65
## 23 -1 1 1 -1 1 6.40
## 24 1 1 1 -1 1 11.61
## 25 -1 -1 -1 1 1 12.43
## 26 1 -1 -1 1 1 17.55
## 27 -1 1 -1 1 1 8.87
## 28 1 1 -1 1 1 25.38
## 29 -1 -1 1 1 1 13.08
## 30 1 -1 1 1 1 18.85
## 31 -1 1 1 1 1 11.78
## 32 1 1 1 1 1 26.05
Dat.Model6.39<-lm(y~A*B*C*D*E,data=Dat5)
coef(Dat.Model6.39)
## (Intercept) A B C D E
## 10.1809375 1.6153125 0.0428125 -0.0115625 2.9890625 2.1884375
## A:B A:C B:C A:D B:D C:D
## 1.2371875 -0.0021875 -0.1959375 1.6659375 -0.0140625 0.0040625
## A:E B:E C:E D:E A:B:C A:B:D
## 1.0265625 1.2828125 0.3021875 1.3903125 0.2509375 -0.3446875
## A:C:D B:C:D A:B:E A:C:E B:C:E A:D:E
## -0.0640625 0.3046875 1.1859375 -0.2596875 0.1703125 0.9009375
## B:D:E C:D:E A:B:C:D A:B:C:E A:B:D:E A:C:D:E
## -0.0403125 0.3965625 -0.0734375 -0.1840625 0.4078125 0.1271875
## B:C:D:E A:B:C:D:E
## -0.0753125 -0.3546875
halfnormal(Dat.Model6.39)
##
## Significant effects (alpha=0.05, Lenth method):
## [1] D E A:D A D:E B:E A:B A:B:E A:E A:D:E
A<-as.fixed(A)
B<-as.fixed(B)
D<-as.fixed(D)
E<-as.fixed(E)
Dat5b<-data.frame(A,B,D,E,y)
Dat.Model6.39b<-aov(y~A+B+D+E+A*B+B*E+D*E+A*D+A*E+A*B*E+A*D*E,data=Dat5b)
plot(Dat.Model6.39b)
Dat5c<-data.frame(A,B,D,E,y)
Dat.Model6.39c<-aov(y~A*B*D*E,data=Dat5c)
GAD::gad(Dat.Model6.39c)
## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## A 1 83.496 83.496 57.1573 1.146e-06 ***
## B 1 0.059 0.059 0.0402 0.8437099
## D 1 285.904 285.904 195.7169 2.163e-10 ***
## E 1 153.256 153.256 104.9123 1.966e-08 ***
## A:B 1 48.980 48.980 33.5297 2.760e-05 ***
## A:D 1 88.811 88.811 60.7961 7.725e-07 ***
## B:D 1 0.006 0.006 0.0043 0.9483385
## A:E 1 33.723 33.723 23.0850 0.0001945 ***
## B:E 1 52.659 52.659 36.0483 1.838e-05 ***
## D:E 1 61.855 61.855 42.3431 7.228e-06 ***
## A:B:D 1 3.802 3.802 2.6026 0.1262344
## A:B:E 1 45.006 45.006 30.8093 4.389e-05 ***
## A:D:E 1 25.974 25.974 17.7806 0.0006552 ***
## B:D:E 1 0.052 0.052 0.0356 0.8527184
## A:B:D:E 1 5.322 5.322 3.6432 0.0744042 .
## Residual 16 23.373 1.461
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Dat.Model6.39d<-lm(y~A+B+D+E,data=Dat5)
coef(Dat.Model6.39d)
## (Intercept) A B D E
## 10.1809375 1.6153125 0.0428125 2.9890625 2.1884375
library(GAD)
library(DoE.base)
CultureMedium <- c(1,1,2,2,1,1,2,2,1,1,2,2,1,1,2,2,1,1,2,2,1,1,2,2)
Time <- c(rep(12,12),rep(18,12))
Values <- c(21,22,25,26,23,28,24,25,20,26,29,27,37,39,31,34,38,38,29,33,35,36,30,35)
interaction.plot(CultureMedium,Time,Values)
Time <- as.fixed(Time)
CultureMedium <- as.fixed(CultureMedium)
Dat1 <- data.frame (Time, CultureMedium, Values)
Dat.Model6.8 <- lm(Values~Time*CultureMedium, data = Dat1)
Dat.Model6.8b <- aov(Dat.Model6.8)
summary(Dat.Model6.8b)
plot(Dat.Model6.8b)
DepositionTime <- c(rep(-1,4),rep(-1,4),rep(1,4),rep(1,4))
ArsenicFlowRate <- c(rep(-1,4),rep(1,4),rep(-1,4),rep(1,4))
Thickness <- c(14.037,16.165,13.972,13.907,13.880,13.860,14.032,13.914,14.821,14.757,14.843,14.878,14.888,14.921,14.415,14.932)
Dat2 <- data.frame(ArsenicFlowRate,DepositionTime,Thickness)
DepositionTime <- as.fixed(DepositionTime)
ArsenicFlowRate <- as.fixed(ArsenicFlowRate)
Dat.Model6.12 <- lm(Thickness~ArsenicFlowRate*DepositionTime, data = Dat2)
coef(Dat.Model6.12)
Dat.Model6.12b <- aov(Dat.Model6.12)
summary(Dat.Model6.12b)
plot(Dat.Model6.12b)
Typeofputter <- c(rep(-1,7),rep(-1,7),rep(1,7),rep(1,7),rep(-1,7),rep(-1,7),rep(1,7),rep(1,7),rep(-1,7),rep(-1,7),rep(1,7),rep(1,7),rep(-1,7),rep(-1,7),rep(1,7),rep(1,7))
LengthofPutt <- c(rep(-1,7),rep(1,7),rep(-1,7),rep(1,7),rep(-1,7),rep(1,7),rep(-1,7),rep(1,7),rep(-1,7),rep(1,7),rep(-1,7),rep(1,7),rep(-1,7),rep(1,7),rep(-1,7),rep(1,7))
Slopeofputt <- c(rep(-1,7),rep(-1,7),rep(-1,7),rep(-1,7),rep(-1,7),rep(-1,7),rep(-1,7),rep(-1,7),rep(1,7),rep(1,7),rep(1,7),rep(1,7),rep(1,7),rep(1,7),rep(1,7),rep(1,7))
Breakofputt <- c(rep(-1,7),rep(-1,7),rep(-1,7),rep(-1,7),rep(1,7),rep(1,7),rep(1,7),rep(1,7),rep(-1,7),rep(-1,7),rep(-1,7),rep(-1,7),rep(1,7),rep(1,7),rep(1,7),rep(1,7))
DistancefromCup <- c(10,18,14,12.5,19,16,18.5, 0,16.5,4.5,17.5,20.5,17.5,33, 4,6,1,14.5,12,14,5, 0,10,34,11,25.5,21.5,0, 0,0,18.5,19.5,16,15,11, 5,20.5,18,20,29.5,19,10, 6.5,18.5,7.5,6,0,10,0, 16.5,4.5,0,23.5,8,8,8, 4.5,18,14.5,10,0,17.5,6, 19.5,18,16,5.5,10,7,36, 15,16,8.5,0,0.5,9,3, 41.5,39,6.5,3.5,7,8.5,36, 8,4.5,6.5,10,13,41,14, 21.5,10.5,6.5,0,15.5,24,16, 0,0,0,4.5,1,4,6.5, 18,5,7,10,32.5,18.5,8)
Typeofputter <- as.fixed(Typeofputter)
LengthofPutt <- as.fixed(LengthofPutt)
Slopeofputt <- as.fixed(Slopeofputt)
Breakofputt <- as.fixed(Breakofputt)
Dat3 <- data.frame(LengthofPutt, Typeofputter, Breakofputt, Slopeofputt, DistancefromCup)
Dat.Model6.21 <- lm(DistancefromCup~LengthofPutt*Typeofputter*Breakofputt*Slopeofputt, data = Dat3)
coef(Dat.Model6.21)
Dat.Model6.21a <- aov(Dat.Model6.21)
gad(Dat.Model6.21a)
plot(Dat.Model6.21a)
Dat.Model6.21b <- lm(DistancefromCup~LengthofPutt*Typeofputter, data = Dat3)
plot(Dat.Model6.21b)
interaction.plot(LengthofPutt,Typeofputter,DistancefromCup)
A<-rep(c(-1,1),8)
B<-rep(c(-1,-1,1,1),4)
C<-rep(c(rep(-1,4),rep(1,4)),2)
D<-c(rep(-1,8),rep(1,8))
Resistivity<-c(1.92,11.28,1.09,5.75,2.13,9.53,1.03,5.35,1.60,11.73,1.16,4.68,2.16,9.11,1.07,5.30)
Dat4<-data.frame(A,B,C,D,Resistivity)
Dat4
Dat.Model6.36 <- lm(Resistivity~A*B*C*D, data=Dat4)
coef(Dat.Model6.36)
halfnormal(Dat.Model6.36)
Anew <- as.fixed(A)
Bnew <- as.fixed(B)
Dat4new <- data.frame(Anew,Bnew,Resistivity)
Dat.Model6.36b <- aov(Resistivity~Anew*Bnew, data=Dat4new)
GAD::gad(Dat.Model6.36b)
plot(Dat.Model6.36b)
Lresistivity <- log(Resistivity)
Dat4c<-data.frame(A,B,C,D,Resistivity)
Dat.Model6.36c <- lm(Resistivity~A*B*C*D, data=Dat4c)
coef(Dat.Model6.36c)
halfnormal(Dat.Model6.36c)
Anewc <- as.fixed(A)
Bnewc <- as.fixed(B)
Dat4newc <- data.frame(Anewc,Bnewc,Lresistivity)
Dat.Model6.36bc <- aov(Lresistivity~Anewc+Bnewc, data=Dat4newc)
GAD::gad(Dat.Model6.36bc)
plot(Dat.Model6.36bc)
Dat4newcb <- data.frame(Anew,Bnew,Lresistivity)
Dat.Model6.36bcb <- aov(Lresistivity~Anew+Bnew, data=Dat4newcb)
GAD::gad(Dat.Model6.36bcb)
plot(Dat.Model6.36bcb)
Dat4d <- data.frame(Lresistivity,A,B)
Dat.Model6.36d <- lm(Lresistivity~A+B, data=Dat4d)
coef(Dat.Model6.36d)
A<-rep(c(-1,1),16)
B<-rep(c(rep(-1,2),rep(1,2)),8)
C<-rep(c(rep(-1,4),rep(1,4)),4)
D<-rep(c(rep(-1,8),rep(1,8)),2)
E<-c(rep(-1,16),rep(1,16))
y<-c(8.11,5.56,5.77,5.82,9.17,7.8,3.23,5.69,8.82,14.23,9.2,8.94,8.68,11.49,6.25,9.12,7.93,5,7.47,12,9.86,3.65,6.4,11.61,12.43,17.55,8.87,25.38,13.08,18.85,11.78,26.05)
Dat5<-data.frame(A,B,C,D,E,y)
Dat5
Dat.Model6.39<-lm(y~A*B*C*D*E,data=Dat5)
coef(Dat.Model6.39)
halfnormal(Dat.Model6.39)
A<-as.fixed(A)
B<-as.fixed(B)
D<-as.fixed(D)
E<-as.fixed(E)
Dat5b<-data.frame(A,B,D,E,y)
Dat.Model6.39b<-aov(y~A+B+D+E+A*B+B*E+D*E+A*D+A*E+A*B*E+A*D*E,data=Dat5b)
plot(Dat.Model6.39b)
Dat5c<-data.frame(A,B,D,E,y)
Dat.Model6.39c<-aov(y~A*B*D*E,data=Dat5c)
GAD::gad(Dat.Model6.39c)
Dat.Model6.39d<-lm(y~A+B+D+E,data=Dat5)
coef(Dat.Model6.39d)